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Abstractions in Computer Systems 

Instruction Set Architecture 

Microarchitecture 
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Digital Circuits 
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Devices and Physics 

Operating System 

Application Software 

Computer System Networked Systems and Systems of Systems 

Software 

Hardware/Software Interface 

Digital Hardware Design 

Analog Design and Physics  
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Part I 
 

Multiprocessors, Parallelism, 
Concurrency, and Speedup 

Acknowledgement: The structure and several of the good examples are derived from the book 
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy 
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How is this computer revolution possible? 
(Revisited) 

Moore’s law:  
•  Integrated circuit resources (transistors) 

double every 18-24 months.   

•  Possible because refined manufacturing 
process. E.g., 4th generation Intel Core i7 
processors uses 22nm manufacturing. 

•  By Gordon E. Moore, Intel’s co-founder, 1960s. 

•  Sometimes considered a self-fulfilling 
prophecy. Served as a goal for the 
semiconductor industry. 
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Have we reached the limit? 
(Revisited) 

During the last decade, the clock rate has 
increased dramatically.  
•  1989: 80486,   25MHz 
•  1993: Pentium,  66Mhz 
•  1997: Pentium Pro,  200MHz 
•  2001: Pentium 4,  2.0 GHz 
•  2004: Pentium 4,  3.6 GHz 

http://www.publicdomainpictures.net/view-image.php? 
image=1281&picture=tegelvagg 

2013:  Core i7, 3.1 GHz - 4 GHz 
 

The Power Wall 

 

Why? 

 

Increased clock rate 
implies increased power 

We cannot cool the system enough to 
increase the clock rate anymore… 

 

“New” trend since 2006: Multicore 
•  Moore’s law still holds 
•  More processors on a chip: multicore 
•  “New” challenge: parallel programming 
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What is a multiprocessor? 

A cluster is a set of computers that are 
connected over a local area network (LAN). 
May be viewed as one large multiprocessor. 

Multicore microprocessors are 
multiprocessors where all processors (cores) 
are located on a single integrated circuite 

A multiprocessor is a computer 
system with two or more processors.  

by Eric Gaba, CC BY-SA 3.0. No modifications made. 

Photo by Robert Harker 

By contrast, a computer with one 
processor is called a uniprocessor. 
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Embedded  
Real-Time Systems 

Personal Computers and  
Personal Mobile Devices 

Warehouse  
Scale Computers 

Photo by Robert Harker Photo by Kyro 

Different Kinds of Computer Systems 
(Revisited) 

Dependability Energy Performance 
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Why multiprocessors? 

Possible to execute many 
computation tasks in parallel. 

Replace energy inefficient 
processors in data centers with 
many efficient smaller 
processors. 

If one out of N processors fails, still 
N-1 processors are functioning.  

Multiprocessor 

 
Dependability 

 

 
Energy 

 

 
Performance 
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Parallelism and Concurrency –  
what is the difference? 

Concurrency is about handling many things at the same time. 
Concurrency may be viewed from the software viewpoint.  

Parallelism is about 
doing (executing) 
many things at the 
same time. Parallelism 
may be viewed from 
the hardware 
viewpoint. 

H
ar

dw
ar

e 

Software 
Sequential Concurrent 

Se
ria

l 
Pa

ra
lle

l 
Note: As always, everybody does 
not agree on the definitions of 
concurrency and parallelism. The 
matrix is from H&P 2014 and the 
informal definitions above are 
similar to what was said in a talk 
by Rob Pike. 

Example: matrix 
multiplication on a 
unicore processor. 

Example: matrix 
multiplication on a 
multicore processor. 

Example: A Linux 
OS running on a 
unicore processor . 

Example: A Linux OS 
running on a multicore 
processor . 
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Speedup =  
 

Speedup  

How much can we improve the 
performance using parallelization? 

Tbefore  

Tafter  

Speedup 
 

Number of 
processors 

1 

2 

3 

4 

1 2 3 4 

Linear speedup  
(or ideal speedup) 

Still increased speedup, but 
less efficient 

Superlinear speedup. Either wrong, 
or due to e.g. cache effects. 

Danger: Relative speedup 
measures only the same program 
True speedup compares also with 
the best known sequential program, 

Execution time of 
one program before 
improvement 

Execution time after 
improvement 
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Amdahl’s Law (1/4) 
Can we achieve linear speedup? 

 
Tafter =  
 

Taffected  

N  
+  Tunaffected 

 

     T = Taffected   + Tunaffected 
 

Divide execution time before 
improvement into two parts.  

Time affected by the 
improvement of 
parallelization  

Time unaffected of 
improvement 
(sequential part) 

Amount of improvement 
(N times improvement) 

 
Speedup =  
 
 

Tbefore  

Tafter  
=  

Tbefore  

Taffected  

N  
+  Tunaffected 

This is sometimes referred 
to as Amdahl’s law 

Execution time after 
improvement 
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Amdahl’s Law (2/4) 

 
Speedup =  
 
 

Tbefore  

Tafter  
=  

Tbefore  

Taffected  

N  
+  Tunaffected 

Exercise: Assume a program consists 
of an image analysis task, sequentially 
followed by a statistical computation 
task. Only the image analysis task can 
be parallelized. How much do we need 
to improve the image analysis task to 
be able to achieve 4 times speedup?  
 
Assume that the program takes 80ms 
in total and that the image analysis task 
takes 60ms out of this time. 

Solution: 
4 = 80 / (60 / N + 80 – 60) 
 
60/N + 20 = 20 
 
60/N = 0 
 
It is impossible to achieve this 
speedup!  
 

E 
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Amdahl’s Law (3/4) 

 
Speedup =  
 
 

Tbefore  

Tafter  
=  

Tbefore  

Taffected  

N  
+  Tunaffected 

Assume that we perform 10 scalar 
integer additions, followed by one matrix 
addition, where matrices are 10x10. 
Assume additions take the same amount 
of time and that we can only parallelize 
the matrix addition. 

Solution A: 
(10+10*10) / (10*10/10 + 10) = 5.5 

Exercise A: What is the speedup with 
10 processors?    
Exercise B: What is the speedup with 
40 processors?    

Solution B: 
(10+10*10) / (10*10/40 + 10) = 8.8 

Exercise C: What is the maximal 
speedup (the limit when N ! infinity) 

Solution C: 
(10+10*10) / (10*10/N + 10) = 11 when  
N ! infinity 

E 

Part I 
Multiprocessors, Parallelism,  
Concurrency, and Speedup 

David Broman 
dbro@kth.se 

16 

Part II 
Instruction-Level 
Parallelism 

Amdahl’s Law (4/4) 

Si
ze

 o
f m

at
ric

es
 

Number of processors 

10 40 

10
x1

0 
20

x2
0 

Speedup  
5.5 

Example continued. What if we change the size of the 
problem (make the matrices larger)? 

Speedup  
8.8 

Speedup  
8.2 

Speedup  
20.5 

But was not the maximal 
speedup 11.1 when N ! infinity? 

Strong scaling = measuring 
speedup while keeping the 
problem size fixed. 

Weak scaling = measuring 
speedup when the problem 
size grows proportionally to 
the increased number of 
processors. 

E 
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Main Classes of Parallelisms 

Data-Level Parallelism (DLP)  
Many data items can be 
processed at the same time.  

Task-Level Parallelism (TLP) 
Different tasks of work that can 
work in independently and in 
parallel 

Example – Sheep shearing 
Assume that sheep are data 
items and the task for the farmer 
is to do sheep shearing (remove 
the wool). Data-level parallelism 
would be the same as using 
several farm hands to do the 
shearing. 

Example – Many tasks at the farm 
Assume that there are many different 
things that can be done on the farm 
(fix the barn, sheep shearing, feed the 
pigs etc.) Task-level parallelism would 
be to let the farm hands do the 
different tasks in parallel. 

DLP 

TLP 
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SISD, SIMD, and MIMD 

In
st

ru
ct

io
n 

St
re

am
 

Data Stream 

Single Multiple 

Si
ng

le
 

M
ul

tip
le

 

SISD 
 

E.g. Intel  
Pentium 4 

An old (from the 1960s) but still very useful classification of 
processors uses the notion of instruction and data streams. 

Data-level parallelism. Examples 
are multimedia extensions (e.g., 
SSE, streaming SIMD 
extension), vector processors.  

SIMD 

MISD 
 

No examples today 

MIMD 

Task-level parallelism. 
Examples are multicore and 
cluster computers 

Physical Q/A  
What is a modern Intel CPU,  
such as Core i7? Stand for  
MIMD, on the table for SIMD 

 

E.g. Intel  
Core i7 

 

E.g. SSE  
Instruction in x86 

E 

Graphical Unit Processors 
(GPUs) are both SIMD and 
MIMD 
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Part II 
 

Instruction-Level Parallelism  

Acknowledgement: The structure and several of the good examples are derived from the book 
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy 
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What is Instruction-Level Parallelism? 

Instruction-Level Parallelism (ILP) may increase 
performance without involvement of the programmer. It may 
be implemented in a SISD, SIMD, and MIMD computer.  

1. Deep pipelines with more pipeline stages 

Two main approaches: 

If the length of all pipeline stages are balanced, we may 
increase performance by increasing the clock speed. 

2. Multiple issue 
A technique where multiple instructions are 
issued in each in cycle. 

ILP may decrease the CPI to lower than 1, 
or using the inverse metric instructions per 
clock cycle (IPC) increase it above 1. 
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Multiple Issue Approaches 

1. Static Multiple Issue 

The two main approaches of multiple issue are 

Decisions on when and which instructions to issue at 
each clock cycle is determined by the compiler. 

2. Dynamic Multiple Issue 
Many of the decisions of issuing instructions are made 
by the processor, dynamically, during execution. 

Issues with 
Multiple 
Issue  

Determining how many and which instructions to 
issue in each cycle. Problematic since instructions 
typically depend on each other. 

How to deal with data and control hazards 
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Static Multiple Issue (1/3) 
VLIW 

Very Long Instruction Word (VLIW) 
processors issue several instructions in each 
cycle using issue packages. 

An issue package may be 
seen as one large instruction 
with multiple operations. 

F D E M W 

F D E M W 

F D E M W 

F D E M W 

add  $s0, $s1, $s2 

add  $t0, $t0, $0 

and  $t2, $t1, $s0 

lw   $t0, 0($s0) 

The compiler may insert 
no-ops to avoid hazards. 

How is VLIW affecting the 
hardware implementation? 

Each issue package has  
two issue slots. 



Part I 
Multiprocessors, Parallelism,  
Concurrency, and Speedup 

David Broman 
dbro@kth.se 

23 

Part II 
Instruction-Level 
Parallelism 

Static Multiple Issue (2/3) 
Changing the hardware 

CLK 
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32 
RD2 

WE3 

Sign Extend 

PCnext 

32 

A
LU

 

32 
A RD 

D
at

a 
M

em
or

y 

CLK 

WE 

WD 
32 

+ 

4 

3 

0 
 

1 

0 
 

1 

0 
 

1 

20:16 

15:11 

<<2 

+ 

0 
 

1 

CLK CLK 

To issue two instructions in each cycle, we 
need the following (not shown in picture): 

CLK 
CLK 

Fetch and 
decode 64-bit 
(two instructions) 

Double the number 
of ports for the 
register file 

Add another 
ALU 
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Static Multiple Issue (3/3) 
VLIW 

Exercise: Assume we have a VLIW processor 
that can issue two instructions in the same clock 
cycle. For the following code, schedule the 
instructions into issue slots and compute IPC. 
Assume that no hazards occurs.  

    addi $s1, $0, 10 
L1: lw   $t0, 0($s2) 
    ori  $t1, $t0, 7 
    sw   $t1, 0($s2) 
    addi $s2, $s2, 4 
    addi $s1, $s1, -1        
    bne  $s1, $0, L1  

addi $s1, $0, 10      1 

lw   $t0, 0($s2)      2 

addi $s2, $s2, 4 addi $s1, $s1, -1     3 

ori  $t1, $t0, 7      4 

bne  $s1, $0, L1  sw   $t1, -4($s2)    5 

    

   L1 

    

    

    

E 

Reschedule to 
avoid stalls 
because of lw 

Empty cells means no-ops 

Slot 1 Slot 2 Cycle 

Solution. IPC = (1 + 6*10) / (1 + 4*10) = 1.487…   
(max 2)    
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Dynamic Multiple-Issue Processors (1/2)  
Superscalar Processors 

In many modern processors (e.g., Intel Core i7), instruction issuing 
is performed dynamically by the processor while executing the 
program. Such processor is called superscalar.  

Instruction Fetch 
and Decode unit 

RS RS RS RS 

Commit 
Unit 

 

FU 
 

 

FU 
 

 

FU 
 

 

FU 
 

The first unit fetches 
and decodes several 
instruction in-order  

Reservation Stations (RS) buffer 
operands to the FU before 
execution. Data dependencies 
are handled dynamically. 
Functional Units (FU)  execute 
the instruction. Examples are 
integer units, floating point units, 
and load/store units. 

The commit unit commits instructions 
(stores in registers) concervatively, 
respecting the obervable order of 
instructions. Called in-order commit. 

Results are sent back to 
RS (if a unit waits on the 
operand) and to the 
commit unit. 
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Dynamic Multiple-Issue Processors (2/2)  
Out-of-Order Execution, RAW, WAR 

If the superscalar processor can reorder the instruction execution 
order, it has an out-of-order execution processor 

lw   $t0, 0($s2) 
addi $t1, $t0, 7 

Example of a Read After Write (RAW) 
dependency (dependency on $t0). The 
superscalar pipeline must make sure that 
the data is available before read. 

sub  $t0, $t1, $s0 
addi $t1, $s0, 10 

Example of a Write After Read (WAR) 
dependency (dependency on $t1). If the 
order is flipped due to out-of-order 
execution, we have a hazard. 

WAR dependencies can be resolved using register 
renaming, where the processor writes to a 
nonarchitectural renaming register (here in the pseudo 
asm code called $r1, not accessible to the programmer)   addi $r1, $s0, 10 

sub  $t0, $t1, $s0 Note that out-of-order processor is not rewriting the code, but 
keeps track of the renamed registers during execution. 
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Some observations on Multi-Issue 
Processors 

Multi-Issue  
Processors 

VLIW processors tend to be more energy efficient 
than superscalar out-of-order processors (less 
hardware, the compiler does the job) 

Superscalar processors with dynamic scheduling 
can hide some latencies that are not statically 
predictable (e.g., cache misses, dynamic branch 
predictions).  

Although modern processors issues 4 to 6 
instructions per clock cycle, few applications results 
in IPC over 2. The reason is dependencies. 
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Intel Microprocessors, some examples  

Processor 
Intel 486 
Intel Pentium 
Intel Pentium Pro 
Intel Pentium 4 Willamette 
Intel Pentium 4 Prescott 
Intel Core 
Intel Core i5 Nehalem 
Intel Core i5 Ivy Bridge 

Source: Patterson and Hennessey, 2014, page 344. 

Year 
1989 
1993 
1997 
2001 
2004 
2006 
2010 
2012 

Clock Rate 
25 MHz 
66 MHz 
200 MHz 
2000 MHz 
3600 MHz 
2930 MHz 
3300 MHz 
3400 MHz 

Pipeline 
Stages 
5 
5 
10 
22 
31 
14 
14 
14 
 

Issue 
Width 
1 
2 
3 
3 
3 
4 
4 
4 

Cores 
 
1 
1 
1 
1 
1 
2 
1 
8 

Power 
 
5 W 
10W 
29 W 
75W 
103W 
75W 
87W 
77W 

Clock rate increase stopped 
(the power wall) around 2006 

Pipeline stages first increased 
and then decreased, but the 
number of cores increased 
after 2006. 

The power consumption 
peaked with Pentium 4 
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Bonus Part 
 

Time-Aware Systems Design 
Research Challenges 

David Broman @ KTH 
(not part of the Examination in IS1200) 
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Time-Aware Systems - Examples 

Aircraft Automotive Process Industry and 
Industrial Automation 

Cyber-Physical Systems (CPS) 

Time-Aware Simulation Systems 

Physical simulations 
(Simulink,  Modelica, etc.) 

Time-Aware Distributed Systems 

Time-stamped 
distributed systems 

(E.g. Google Spanner) 



Part I 
Multiprocessors, Parallelism,  
Concurrency, and Speedup 

David Broman 
dbro@kth.se 

31 

Part II 
Instruction-Level 
Parallelism 

What is our goal? 

“Everything should be made as simple as possible, 
but not simpler“ 

Execution time should be as short as possible, but not shorter 

attributed to Albert Einstein 

Task 

Deadline 
 

Slack 

 

No point in making the 
execution time shorter, as 
long as the deadline is met. 

Minimize the slack 
Objective: 
Minimize area, memory, 
energy. 

Challenge: 
Still guarantee to meet 
all timing constraints. 
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Programming Model and Time 

Timing is not part of the software semantics 
 Correct execution of programs (e.g., in C, C++, C#, Java, Scala, Haskell, 
OCaml) has nothing to do with how long time things takes to execute. 

 

Programming 
Model 

Timing Dependent on the 
Hardware Platform 

 

Make time an abstraction within the 
programming model 

 

Traditional Approach 

 

Programming 
Model 

Our Objective 

 

Timing is independent of the hardware 
platform (within certain constraints) 
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Are you interested to be challenged? 

•  Programming language design, or 

If you are interested in 

•  Compilers, or 
•  Computer Architecture 

You are 
•  ambitious and interested in learning new things  

You want to 
•  do a real research project as part of you Bachelor’s or Master’s 

thesis project 

Please send an email to dbro@kth.se, so that we can discuss 
some ideas. 
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Summary 

Thanks for listening! 

Some key take away points: 

•  Amdahl’s law can be used to estimate maximal 
speedup when introducing parallelism in parts of a 
program. 

•  Instruction Level Parallelism (ILP) has been very 
important for performance improvements over the years, 
but improvements have not been as significant lately. 

Reading for next lecture: 
P&H Chapter 6 about parallel 
processors and the cloud 


