
Computer Hardware Engineering

Lecture 9: Parallelism, Concurrency, Speedup, and ILP

David Broman
Associate Professor, KTH Royal Institute of Technology

Assistant Research Engineer, University of California, Berkeley

IS1200, spring 2015

Slides version 1.0

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

2

Part II
Instruction-Level
Parallelism

Course Structure

L

Module 1: Logic Design

Module 3: Processor Design

Module 2: C and Assembly
Programming

Module 5: Memory Hierarchy

Module 4: I/O Systems

Module 6: Parallel Processors
and Programs

L

L1

L3

L4

L5

L8

L7

L10

DCÖ1 Lab:dicom

E1

Lab: nios2time

Home lab: C

Home Lab: cache

Lab: nios2io

Lab: nios2int

L6 L9

DCÖ2

L2

E2

E4

E3

E5

E6 E7

E8

E9

E10

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

3

Part II
Instruction-Level
Parallelism

Abstractions in Computer Systems

Instruction Set Architecture

Microarchitecture

Logic and Building Blocks

Digital Circuits

Analog Circuits

Devices and Physics

Operating System

Application Software

Computer System Networked Systems and Systems of Systems

Software

Hardware/Software Interface

Digital Hardware Design

Analog Design and Physics

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

4

Part II
Instruction-Level
Parallelism

Agenda

Part I

Multiprocessors, Parallelism,
Concurrency, and Speedup

Part II

Instruction-Level Parallelism

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

5

Part II
Instruction-Level
Parallelism

Part I

Multiprocessors, Parallelism,
Concurrency, and Speedup

Acknowledgement: The structure and several of the good examples are derived from the book
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

6

Part II
Instruction-Level
Parallelism

How is this computer revolution possible?
(Revisited)

Moore’s law:
•  Integrated circuit resources (transistors)

double every 18-24 months.

•  Possible because refined manufacturing
process. E.g., 4th generation Intel Core i7
processors uses 22nm manufacturing.

•  By Gordon E. Moore, Intel’s co-founder, 1960s.

•  Sometimes considered a self-fulfilling
prophecy. Served as a goal for the
semiconductor industry.

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

7

Part II
Instruction-Level
Parallelism

Have we reached the limit?
(Revisited)

During the last decade, the clock rate has
increased dramatically.
•  1989: 80486, 25MHz
•  1993: Pentium, 66Mhz
•  1997: Pentium Pro, 200MHz
•  2001: Pentium 4, 2.0 GHz
•  2004: Pentium 4, 3.6 GHz

http://www.publicdomainpictures.net/view-image.php?
image=1281&picture=tegelvagg

2013: Core i7, 3.1 GHz - 4 GHz

The Power Wall

Why?

Increased clock rate
implies increased power

We cannot cool the system enough to
increase the clock rate anymore…

“New” trend since 2006: Multicore
•  Moore’s law still holds
•  More processors on a chip: multicore
•  “New” challenge: parallel programming

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

8

Part II
Instruction-Level
Parallelism

What is a multiprocessor?

A cluster is a set of computers that are
connected over a local area network (LAN).
May be viewed as one large multiprocessor.

Multicore microprocessors are
multiprocessors where all processors (cores)
are located on a single integrated circuite

A multiprocessor is a computer
system with two or more processors.

by Eric Gaba, CC BY-SA 3.0. No modifications made.

Photo by Robert Harker

By contrast, a computer with one
processor is called a uniprocessor.

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

9

Part II
Instruction-Level
Parallelism

Embedded
Real-Time Systems

Personal Computers and
Personal Mobile Devices

Warehouse
Scale Computers

Photo by Robert Harker Photo by Kyro

Different Kinds of Computer Systems
(Revisited)

Dependability Energy Performance

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

10

Part II
Instruction-Level
Parallelism

Why multiprocessors?

Possible to execute many
computation tasks in parallel.

Replace energy inefficient
processors in data centers with
many efficient smaller
processors.

If one out of N processors fails, still
N-1 processors are functioning.

Multiprocessor

Dependability

Energy

Performance

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

11

Part II
Instruction-Level
Parallelism

Parallelism and Concurrency –
what is the difference?

Concurrency is about handling many things at the same time.
Concurrency may be viewed from the software viewpoint.

Parallelism is about
doing (executing)
many things at the
same time. Parallelism
may be viewed from
the hardware
viewpoint.

H
ar

dw
ar

e

Software
Sequential Concurrent

Se
ria

l
Pa

ra
lle

l
Note: As always, everybody does
not agree on the definitions of
concurrency and parallelism. The
matrix is from H&P 2014 and the
informal definitions above are
similar to what was said in a talk
by Rob Pike.

Example: matrix
multiplication on a
unicore processor.

Example: matrix
multiplication on a
multicore processor.

Example: A Linux
OS running on a
unicore processor .

Example: A Linux OS
running on a multicore
processor .

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

12

Part II
Instruction-Level
Parallelism

Speedup =

Speedup

How much can we improve the
performance using parallelization?

Tbefore

Tafter

Speedup

Number of
processors

1

2

3

4

1 2 3 4

Linear speedup
(or ideal speedup)

Still increased speedup, but
less efficient

Superlinear speedup. Either wrong,
or due to e.g. cache effects.

Danger: Relative speedup
measures only the same program
True speedup compares also with
the best known sequential program,

Execution time of
one program before
improvement

Execution time after
improvement

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

13

Part II
Instruction-Level
Parallelism

Amdahl’s Law (1/4)
Can we achieve linear speedup?

Tafter =

Taffected

N
+ Tunaffected

 T = Taffected + Tunaffected

Divide execution time before
improvement into two parts.

Time affected by the
improvement of
parallelization

Time unaffected of
improvement
(sequential part)

Amount of improvement
(N times improvement)

Speedup =

Tbefore

Tafter
=

Tbefore

Taffected

N
+ Tunaffected

This is sometimes referred
to as Amdahl’s law

Execution time after
improvement

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

14

Part II
Instruction-Level
Parallelism

Amdahl’s Law (2/4)

Speedup =

Tbefore

Tafter
=

Tbefore

Taffected

N
+ Tunaffected

Exercise: Assume a program consists
of an image analysis task, sequentially
followed by a statistical computation
task. Only the image analysis task can
be parallelized. How much do we need
to improve the image analysis task to
be able to achieve 4 times speedup?

Assume that the program takes 80ms
in total and that the image analysis task
takes 60ms out of this time.

Solution:
4 = 80 / (60 / N + 80 – 60)

60/N + 20 = 20

60/N = 0

It is impossible to achieve this
speedup!

E

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

15

Part II
Instruction-Level
Parallelism

Amdahl’s Law (3/4)

Speedup =

Tbefore

Tafter
=

Tbefore

Taffected

N
+ Tunaffected

Assume that we perform 10 scalar
integer additions, followed by one matrix
addition, where matrices are 10x10.
Assume additions take the same amount
of time and that we can only parallelize
the matrix addition.

Solution A:
(10+10*10) / (10*10/10 + 10) = 5.5

Exercise A: What is the speedup with
10 processors?
Exercise B: What is the speedup with
40 processors?

Solution B:
(10+10*10) / (10*10/40 + 10) = 8.8

Exercise C: What is the maximal
speedup (the limit when N ! infinity)

Solution C:
(10+10*10) / (10*10/N + 10) = 11 when
N ! infinity

E

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

16

Part II
Instruction-Level
Parallelism

Amdahl’s Law (4/4)

Si
ze

 o
f m

at
ric

es

Number of processors

10 40

10
x1

0
20

x2
0

Speedup
5.5

Example continued. What if we change the size of the
problem (make the matrices larger)?

Speedup
8.8

Speedup
8.2

Speedup
20.5

But was not the maximal
speedup 11.1 when N ! infinity?

Strong scaling = measuring
speedup while keeping the
problem size fixed.

Weak scaling = measuring
speedup when the problem
size grows proportionally to
the increased number of
processors.

E

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

17

Part II
Instruction-Level
Parallelism

Main Classes of Parallelisms

Data-Level Parallelism (DLP)
Many data items can be
processed at the same time.

Task-Level Parallelism (TLP)
Different tasks of work that can
work in independently and in
parallel

Example – Sheep shearing
Assume that sheep are data
items and the task for the farmer
is to do sheep shearing (remove
the wool). Data-level parallelism
would be the same as using
several farm hands to do the
shearing.

Example – Many tasks at the farm
Assume that there are many different
things that can be done on the farm
(fix the barn, sheep shearing, feed the
pigs etc.) Task-level parallelism would
be to let the farm hands do the
different tasks in parallel.

DLP

TLP

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

18

Part II
Instruction-Level
Parallelism

SISD, SIMD, and MIMD

In
st

ru
ct

io
n

St
re

am

Data Stream

Single Multiple

Si
ng

le

M
ul

tip
le

SISD

E.g. Intel
Pentium 4

An old (from the 1960s) but still very useful classification of
processors uses the notion of instruction and data streams.

Data-level parallelism. Examples
are multimedia extensions (e.g.,
SSE, streaming SIMD
extension), vector processors.

SIMD

MISD

No examples today

MIMD

Task-level parallelism.
Examples are multicore and
cluster computers

Physical Q/A
What is a modern Intel CPU,
such as Core i7? Stand for
MIMD, on the table for SIMD

E.g. Intel
Core i7

E.g. SSE
Instruction in x86

E

Graphical Unit Processors
(GPUs) are both SIMD and
MIMD

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

19

Part II
Instruction-Level
Parallelism

Part II

Instruction-Level Parallelism

Acknowledgement: The structure and several of the good examples are derived from the book
“Computer Organization and Design” (2014) by David A. Patterson and John L. Hennessy

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

20

Part II
Instruction-Level
Parallelism

What is Instruction-Level Parallelism?

Instruction-Level Parallelism (ILP) may increase
performance without involvement of the programmer. It may
be implemented in a SISD, SIMD, and MIMD computer.

1. Deep pipelines with more pipeline stages

Two main approaches:

If the length of all pipeline stages are balanced, we may
increase performance by increasing the clock speed.

2. Multiple issue
A technique where multiple instructions are
issued in each in cycle.

ILP may decrease the CPI to lower than 1,
or using the inverse metric instructions per
clock cycle (IPC) increase it above 1.

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

21

Part II
Instruction-Level
Parallelism

Multiple Issue Approaches

1. Static Multiple Issue

The two main approaches of multiple issue are

Decisions on when and which instructions to issue at
each clock cycle is determined by the compiler.

2. Dynamic Multiple Issue
Many of the decisions of issuing instructions are made
by the processor, dynamically, during execution.

Issues with
Multiple
Issue

Determining how many and which instructions to
issue in each cycle. Problematic since instructions
typically depend on each other.

How to deal with data and control hazards

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

22

Part II
Instruction-Level
Parallelism

Static Multiple Issue (1/3)
VLIW

Very Long Instruction Word (VLIW)
processors issue several instructions in each
cycle using issue packages.

An issue package may be
seen as one large instruction
with multiple operations.

F D E M W

F D E M W

F D E M W

F D E M W

add $s0, $s1, $s2

add $t0, $t0, $0

and $t2, $t1, $s0

lw $t0, 0($s0)

The compiler may insert
no-ops to avoid hazards.

How is VLIW affecting the
hardware implementation?

Each issue package has
two issue slots.

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

23

Part II
Instruction-Level
Parallelism

Static Multiple Issue (2/3)
Changing the hardware

CLK

A RD

In
st

ru
ct

io
n

M
em

or
y

CLK

A1
RD1

A2

A3

WD3

32
RD2

WE3

Sign Extend

PCnext

32

A
LU

32
A RD

D
at

a
M

em
or

y

CLK

WE

WD
32

+

4

3

0

1

0

1

0

1

20:16

15:11

<<2

+

0

1

CLK CLK

To issue two instructions in each cycle, we
need the following (not shown in picture):

CLK
CLK

Fetch and
decode 64-bit
(two instructions)

Double the number
of ports for the
register file

Add another
ALU

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

24

Part II
Instruction-Level
Parallelism

Static Multiple Issue (3/3)
VLIW

Exercise: Assume we have a VLIW processor
that can issue two instructions in the same clock
cycle. For the following code, schedule the
instructions into issue slots and compute IPC.
Assume that no hazards occurs.

 addi $s1, $0, 10
L1: lw $t0, 0($s2)
 ori $t1, $t0, 7
 sw $t1, 0($s2)
 addi $s2, $s2, 4
 addi $s1, $s1, -1
 bne $s1, $0, L1

addi $s1, $0, 10 1

lw $t0, 0($s2) 2

addi $s2, $s2, 4 addi $s1, $s1, -1 3

ori $t1, $t0, 7 4

bne $s1, $0, L1 sw $t1, -4($s2) 5

 L1

E

Reschedule to
avoid stalls
because of lw

Empty cells means no-ops

Slot 1 Slot 2 Cycle

Solution. IPC = (1 + 6*10) / (1 + 4*10) = 1.487…
(max 2)

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

25

Part II
Instruction-Level
Parallelism

Dynamic Multiple-Issue Processors (1/2)
Superscalar Processors

In many modern processors (e.g., Intel Core i7), instruction issuing
is performed dynamically by the processor while executing the
program. Such processor is called superscalar.

Instruction Fetch
and Decode unit

RS RS RS RS

Commit
Unit

FU

FU

FU

FU

The first unit fetches
and decodes several
instruction in-order

Reservation Stations (RS) buffer
operands to the FU before
execution. Data dependencies
are handled dynamically.
Functional Units (FU) execute
the instruction. Examples are
integer units, floating point units,
and load/store units.

The commit unit commits instructions
(stores in registers) concervatively,
respecting the obervable order of
instructions. Called in-order commit.

Results are sent back to
RS (if a unit waits on the
operand) and to the
commit unit.

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

26

Part II
Instruction-Level
Parallelism

Dynamic Multiple-Issue Processors (2/2)
Out-of-Order Execution, RAW, WAR

If the superscalar processor can reorder the instruction execution
order, it has an out-of-order execution processor

lw $t0, 0($s2)
addi $t1, $t0, 7

Example of a Read After Write (RAW)
dependency (dependency on $t0). The
superscalar pipeline must make sure that
the data is available before read.

sub $t0, $t1, $s0
addi $t1, $s0, 10

Example of a Write After Read (WAR)
dependency (dependency on $t1). If the
order is flipped due to out-of-order
execution, we have a hazard.

WAR dependencies can be resolved using register
renaming, where the processor writes to a
nonarchitectural renaming register (here in the pseudo
asm code called $r1, not accessible to the programmer) addi $r1, $s0, 10

sub $t0, $t1, $s0 Note that out-of-order processor is not rewriting the code, but
keeps track of the renamed registers during execution.

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

27

Part II
Instruction-Level
Parallelism

Some observations on Multi-Issue
Processors

Multi-Issue
Processors

VLIW processors tend to be more energy efficient
than superscalar out-of-order processors (less
hardware, the compiler does the job)

Superscalar processors with dynamic scheduling
can hide some latencies that are not statically
predictable (e.g., cache misses, dynamic branch
predictions).

Although modern processors issues 4 to 6
instructions per clock cycle, few applications results
in IPC over 2. The reason is dependencies.

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

28

Part II
Instruction-Level
Parallelism

Intel Microprocessors, some examples

Processor
Intel 486
Intel Pentium
Intel Pentium Pro
Intel Pentium 4 Willamette
Intel Pentium 4 Prescott
Intel Core
Intel Core i5 Nehalem
Intel Core i5 Ivy Bridge

Source: Patterson and Hennessey, 2014, page 344.

Year
1989
1993
1997
2001
2004
2006
2010
2012

Clock Rate
25 MHz
66 MHz
200 MHz
2000 MHz
3600 MHz
2930 MHz
3300 MHz
3400 MHz

Pipeline
Stages
5
5
10
22
31
14
14
14

Issue
Width
1
2
3
3
3
4
4
4

Cores

1
1
1
1
1
2
1
8

Power

5 W
10W
29 W
75W
103W
75W
87W
77W

Clock rate increase stopped
(the power wall) around 2006

Pipeline stages first increased
and then decreased, but the
number of cores increased
after 2006.

The power consumption
peaked with Pentium 4

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

29

Part II
Instruction-Level
Parallelism

Bonus Part

Time-Aware Systems Design
Research Challenges

David Broman @ KTH
(not part of the Examination in IS1200)

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

30

Part II
Instruction-Level
Parallelism

Time-Aware Systems - Examples

Aircraft Automotive Process Industry and
Industrial Automation

Cyber-Physical Systems (CPS)

Time-Aware Simulation Systems

Physical simulations
(Simulink, Modelica, etc.)

Time-Aware Distributed Systems

Time-stamped
distributed systems

(E.g. Google Spanner)

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

31

Part II
Instruction-Level
Parallelism

What is our goal?

“Everything should be made as simple as possible,
but not simpler“

Execution time should be as short as possible, but not shorter

attributed to Albert Einstein

Task

Deadline

Slack

No point in making the
execution time shorter, as
long as the deadline is met.

Minimize the slack
Objective:
Minimize area, memory,
energy.

Challenge:
Still guarantee to meet
all timing constraints.

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

32

Part II
Instruction-Level
Parallelism

Programming Model and Time

Timing is not part of the software semantics
 Correct execution of programs (e.g., in C, C++, C#, Java, Scala, Haskell,
OCaml) has nothing to do with how long time things takes to execute.

Programming
Model

Timing Dependent on the
Hardware Platform

Make time an abstraction within the
programming model

Traditional Approach

Programming
Model

Our Objective

Timing is independent of the hardware
platform (within certain constraints)

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

33

Part II
Instruction-Level
Parallelism

Are you interested to be challenged?

•  Programming language design, or

If you are interested in

•  Compilers, or
•  Computer Architecture

You are
•  ambitious and interested in learning new things

You want to
•  do a real research project as part of you Bachelor’s or Master’s

thesis project

Please send an email to dbro@kth.se, so that we can discuss
some ideas.

Part I
Multiprocessors, Parallelism,
Concurrency, and Speedup

David Broman
dbro@kth.se

34

Part II
Instruction-Level
Parallelism

Summary

Thanks for listening!

Some key take away points:

•  Amdahl’s law can be used to estimate maximal
speedup when introducing parallelism in parts of a
program.

•  Instruction Level Parallelism (ILP) has been very
important for performance improvements over the years,
but improvements have not been as significant lately.

Reading for next lecture:
P&H Chapter 6 about parallel
processors and the cloud

