
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266087980

A Practical Guide to Building High-Performance Computing Clusters

Book · January 2011

DOI: 10.13140/2.1.1153.1529

CITATIONS

2
READS

3,512

1 author:

Tsung-Lung Li

National Chia-Yi Universty

43 PUBLICATIONS 228 CITATIONS

SEE PROFILE

All content following this page was uploaded by Tsung-Lung Li on 26 September 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/266087980_A_Practical_Guide_to_Building_High-Performance_Computing_Clusters?enrichId=rgreq-7ac5a02a3c38ff24c41be3cc14bfd68e-XXX&enrichSource=Y292ZXJQYWdlOzI2NjA4Nzk4MDtBUzoxNDU2MDU5NjgwMTEyNjRAMTQxMTcyNjU3NjM0NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/266087980_A_Practical_Guide_to_Building_High-Performance_Computing_Clusters?enrichId=rgreq-7ac5a02a3c38ff24c41be3cc14bfd68e-XXX&enrichSource=Y292ZXJQYWdlOzI2NjA4Nzk4MDtBUzoxNDU2MDU5NjgwMTEyNjRAMTQxMTcyNjU3NjM0NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7ac5a02a3c38ff24c41be3cc14bfd68e-XXX&enrichSource=Y292ZXJQYWdlOzI2NjA4Nzk4MDtBUzoxNDU2MDU5NjgwMTEyNjRAMTQxMTcyNjU3NjM0NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tsung_Lung_Li?enrichId=rgreq-7ac5a02a3c38ff24c41be3cc14bfd68e-XXX&enrichSource=Y292ZXJQYWdlOzI2NjA4Nzk4MDtBUzoxNDU2MDU5NjgwMTEyNjRAMTQxMTcyNjU3NjM0NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tsung_Lung_Li?enrichId=rgreq-7ac5a02a3c38ff24c41be3cc14bfd68e-XXX&enrichSource=Y292ZXJQYWdlOzI2NjA4Nzk4MDtBUzoxNDU2MDU5NjgwMTEyNjRAMTQxMTcyNjU3NjM0NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tsung_Lung_Li?enrichId=rgreq-7ac5a02a3c38ff24c41be3cc14bfd68e-XXX&enrichSource=Y292ZXJQYWdlOzI2NjA4Nzk4MDtBUzoxNDU2MDU5NjgwMTEyNjRAMTQxMTcyNjU3NjM0NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tsung_Lung_Li?enrichId=rgreq-7ac5a02a3c38ff24c41be3cc14bfd68e-XXX&enrichSource=Y292ZXJQYWdlOzI2NjA4Nzk4MDtBUzoxNDU2MDU5NjgwMTEyNjRAMTQxMTcyNjU3NjM0NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Practical Guide to Building High-Performance Computing Clusters

Tsung-Lung Li

Professor
Department of Electrophysics

University of Chia-Yi University
Chiayi
Taiwan

Dedicated to Arlene and Angela,

who waited for me patiently
while I spent many hours

on the cluster

v

Preface

The demand for computational power has significantly increased in the nanoscience era
because simulations are usually performed at molecular levels with quantum mechanics. At
the same time, the performance and availability of both commodity computers and inexpen-
sive high-speed networking hardware have increased drastically in the past decades. Hence,
scientists and engineers working on nanoscience simulations may attempt to build a small- or
medium-size high-performance computing cluster at their laboratories. However, building a
high-performance computing cluster is not a simple task, especially for nanoscience researchers
whose specialties are not on subjects in computer science.

In this monograph, the procedures to build a high-performance computing cluster are pre-
sented in a way that is followable to less system-oriented researchers. The interested readers
can follow the idea or can use it as a guide to build their own system.

Chiayi, Tsung-Lung Li
July 2011

vii

Acknowledgment

The author would like to acknowledge two workshops provided by the National Center
for High-Performance Computing (NCHC), Hsinchu, Taiwan, including “DRBL and Clonezilla
Centralized Management Environment” and “Workshop on Integrated PC Clusters.” This work
is partly inspired by these workshops. The author would also like to thank the Free Software
Laboratory, NCHC, and its team members, Jr-Huang Shiau, Chen-Kai Sun, Yao-Tsung Wang,
and Yu-Chin Tsai for their devotion to the DRBL package, and their technical support on this
project. The supports of the National Science Council (NSC) by Grant Nos. NSC-96-2112-M-
415-003-MY3 and NSC-99-2112-M-415-008 and of the National Center for Theoretical Sciences
(NCTS) are also acknowledged.

Contents

1 Introduction 1

2 Hardware 3

3 System Software 5
3.1 Linux System: openSUSE 11.1 . 6
3.2 Compilers: Intel and Open64 . 7
3.3 Diskless Remote Boot Linux (DRBL) . 8
3.4 Network Time Protocol (NTP) . 12
3.5 Secure Shell (SSH) . 12
3.6 Message Passing Interface: MPICH2 . 13
3.7 Message Passing Interface: MPICH . 18
3.8 Queuing System: Torque (openPBS) . 29
3.9 Scheduler: Maui . 38
3.10 Monitoring System: Ganglia . 41

4 The Compeleted Cluster 47

5 Application Software 49
5.1 Parallel VASP . 49
5.2 Serial VASP . 51
5.3 Parallel Gamma-Point-Only VASP . 52
5.4 Serial Gamma-Point-Only VASP . 52
5.5 Running VASP . 53
5.6 VASP benchmark . 54

6 Concluding Remarks 55

ix

x CONTENTS

Chapter 1

Introduction

Simulations are usually performed at molecular levels for nanoscience problems. Frequently,
the problems are solved quantum-mechanically and the solution schemes are computationally
expensive[1, 2]. With the advent of the nanoscience era, the demand for computational power
has increased significantly. At the same time, the performance and availability of commodity-
off-the-shelf computers and inexpensive high-speed networking hardware have increased dras-
tically in the past decade. Scientists and engineers working on nanoscience simulations may
attempt to build a small- or medium-size high-performance computing cluster at their labora-
tories for parallelized applications.

However, building a high-performance computing cluster is not a simple task, especially for
nanoscience researchers whose specialties are not on the subjects of computer sciences. With
the usage of Diskless Remote Boot for Linux (DRBL), the construction and maintenance of
a computing cluster are greatly simplified. Hence, building a computing cluster from scratch
becomes feasible for researchers without much prior exposure to computer sciences.

In this work, the processes to build a high-performance computing cluster with diskless
clients are presented. A computing cluster with diskless clients reduces the construction and
maintenance efforts, and improves the cluster hardware reliability. The construction of a com-
puting cluster involves the installation of several software systems such as networking, paral-
lelization, queuing, and monitoring systems. These software systems have to work in harmony
with the operation system and application software. Hence, in addition to the system hardware,
the installation processes of the software systems mentioned above will be illustrated.

Of course, the processes to be presented in this chapter are not the only way to construct
a high-performance computing cluster. There are many other good approaches[3, 4]. The
materials in this chapter is just one of the feasible way to build a computing cluster. The path
taken in this chapter can be followed by a less system-oriented researcher.

Not much complicated knowledge in computer science is assumed for the readers. However,
some basic knowledge on the Linux operating system is required. The readers are assumed to
have some experiences on the operation and administration of a single machine Linux. The
installation and configuration steps to construct a computing cluster are given in such details
that interested readers can follow the ideas or can use them as a guide to build their own
systems.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Hardware

This high-performance computing cluster to be constructed in this chapter consists of one server
and three diskless client nodes. Each client obtains the image of the operating system from the
server at boot time, and accesses file systems exported by the server after it is booted. The
client operation relies on the networking between nodes. The hardware of the sever and client
nodes is described as follows.

Server

192.168.1.15 192.168.1.12

Client 1

192.168.1.13

Client 2 Client 3

192.168.1.14

To External Network

Keyboard

Mouse
Monitor

KVM Switch

Network Switch

Figure 2.1: Illustration of the cluster hardware configuration.

Each client is equipped with dual Intel Quad-Core Xeon E5405 2.00GHz processors[5], a
Tyan Tempest i5100W S5376G2NR motherboard[6], six banks of 2G DDR2-667 ECC registered
SDRAM memory, and a 8GB SATA solid-state disk1.

On-board with the motherboard are dual channels of Intel 82573V Gigabit Ethernet LAN
controllers and one XGI Z9S video controller. The solid-state disk on each client is mainly to
be used as local swap space for two reasons. First, the client will not crash due to lack of swap
space if memory swapping ever occurs. Second, memory swapping on the local space reduces
network loading between server and clients. No other disk is installed on each client for this
implementation of high-performance computing cluster. Utilization of solid-state disks on the
client nodes increases the cluster hardware reliability because there are no moving parts on the

1A total of 12 GB memory and 8 GB swap is insufficient for some of our applications. The solid-state disk

was replaced later by a SATA hard drive to augment the swap space. It is suggested to install as many memories

as the readers can afford. This will drastically improve the system performance. For the present mother board,

each node can have up to 48GB memory.

3

4 CHAPTER 2. HARDWARE

drive. The on-board video controller is adequate for the client because only text display mode
will be used for the client.

In addition to the hardware mentioned above, the server has three Seagate 500GB SATA
hard disks, a DVD SATA drive, and an additional ASUS EAH4650 video controller. No solid-
state disk is installed with the server because its swap space can conveniently located on one
of the hard disks. The additional video card is required because the on-board video controller
is not fast enough to support the 1680×1050 LCD monitor in the graphics display mode.

As shown in Fig. 2.1, the intra-cluster communications between the server and the three
clients are switched by a PCI 16-port Gigabit Switching HUB FXG-16TX using one of the dual
channels of the Intel gigabit network controller on each computer. The second channel of the
network controller is used for communication with the external network. The server and the
clients are also connected to an ATEN Master View Maxiport ACS-1216A KVM switch for
convenient monitoring and operation of the cluster.

As a result, each node of the cluster has two quad-cores CPUs (a total of 8 CPU cores per
node) and 12GB SDRAM memory. The cluster has the total hard disk space of 1.5TB for
storage and a gigabit network communication interface between nodes. Besides the solid-state
disk mainly reserved for local swap space, the client does not have any hard disk. Hence, the
client nodes of this computing cluster are systemless or, to some extent, diskless.

By the time this monograph is published, most of the hardware mentioned above may be
no longer available on the market. The above list of hardware only serves as a demonstration
to the idea. Readers may have to design their system hardware based on the idea.

Chapter 3

System Software

The installation of system software on the computing cluster is an integration process of several
software systems as illustrated in Fig. 3.1, including an operating system, a networking system,
a parallelization system, a queuing system, and a monitoring system.

DRBL

Networking System

(DHCP, TFTP, NFS, NIS)

Compilers

openSUSE Linux

Operating System

Applications Application Packages

NTP

SSH

End

System
Software

Application
Software

Start

MPICH2/MPICH

Torque(openPBS)

Maui

Ganglia Monitoring System

Queuing System

Parallelization System

Figure 3.1: Installation process of system software and applications to the computing cluster.

The operating system of the high-performance computing cluster is based on the open-
SUSE 11.1 Linux[7] distribution. In addition to the GNU compilers[8], Intel[9] and Open64[10]
compilers are installed. Clustering software systems include Diskless Remote Boot in Linux
(DRBL)[11], SSH, NTP, Torque (openPBS)[12], Maui[13], and Ganglia[14]. The parallelization
is achieved by MPICH2[15] and MPICH[16].

In the installation process, conflicting between the software systems has to be resolved.
This is an important issue for the computing nodes of the cluster to co-operate properly. The
installation processes of the pieces of system software mentioned above are given in the following

5

6 CHAPTER 3. SYSTEM SOFTWARE

subsections.

3.1 Linux System: openSUSE 11.1

The operating system of the computing cluster is based on openSUSE Linux 11.1 distribution[17].
Image openSUSE-11.1-DVD-x86_64.iso is installed to the server of the cluster[7]. The kernel
version is 2.6.27.

The three hard disks are partitioned as follows. Device /dev/sda contains directories
/boot (4GB), / (root, 40GB), /opt (40GB), /tftpboot (20GB), and /home (361GB). De-
vice /dev/sdb contains directories /tmp (20GB) and /work (433GB), and swap (12GB). Device
/dev/sdc contains directory /srv (465GB). The ext3 file system is used for all partitions.

For the sake of completeness, all packages of the openSUSE Linux 11.1 are selected to be
installed except for those in a few sections: KDE3 Desktop Environment, KDE3 Base System,
32-bit Runtime Environment, Laptop, TablePC, and Xen Virtual Machine Host Server.
However, the selection of the packages in section KDE Development turns back on the selection
of two sections: KDE3 Desktop Environment and KDE3 Base System. Conflicting packages
are selectively installed. For instance, packages tftp and postfix are favored over packages
aftp and sendmail, respectively. Shell bash is the default for all users.

For networking, device eth0 is utilized for external connection. The hostname is set to
be sham.ncyu.edu.tw. IPv6 is enabled. “Traditional network setup with ifup” is selected
for network connection. Fixed IP address 140.130.91.204, netmask 255.255.255.0, DNS, and
gateway are set. Device eth1 is used for internal connection. The hostname and fixed IP
address associated with this device are sham-eth1.ncyu.edu.tw and 192.168.1.15, respectively.
Notice that the IP address of eth1 must be within the private IP address ranges, for instance,
within 192.168.*.*. All other settings are the same as device eth0.

Depending on the hardware of the video card, the video driver might have to be updated
to make better use of the video hardware. Since the ASUS video card added to the server uses
ATI Radeon HD4650 chipset, the video driver is updated with the following steps. First, obtain
the ATI video driver package[18], and issue as root

sh ati-driver-installer-9-12-x86.x86_64.run

and select to generate package fglrx64_7_4_0_SUSE111-8.681-1.x86_64.rpm. Then, make
sure that there is no previously installed version of ATI video driver by

rpm -qa | grep fglrx64

Remove the older version by command “rpm -e pacakge_name” if there is any. Install the
generated package and generate a new /etc/X11/xorg.conf file by commands

rpm -ihv fglrx64_7_4_0_SUSE111-8.681-1.x86_64.rpm

cp -a /etc/X11/xorg.conf /etc/X11/xorg.conf.orig

aticonfig --initial

The second command is to back up the original /etc/X11/xorg.conf file. It is the convention of
this work to name the backup configuration files with a .orig extension. The new video driver
takes effect after rebooting the system, and can be verified by clicking on YaST → Hardware →
Graphics Card and Monitor. Throughout this chapter, notation “Menu → Submenu” means
clicking on Menu and then on Submenu.

A few additional tunings on the operating system are suggested in this paragraph. First,
configure /etc/sudoers by visudo. Second, activate vsftp and turn on run levels 3 and 5
by clicking on YaST → System → System Services (Runlevel). Configure vsftp by modifying
the following lines in /etc/vsftpd.conf,

3.2. COMPILERS: INTEL AND OPEN64 7

write_enable=YES

local_enable=YES

local_umask=022

ftpd_banner="Welcome to sham FTP service."

Third, add software repositories by

zypper addrepo \

http://ftp.skynet.be/pub/packman/suse/11.1 packman

zypper addrepo \

http://packman.iu-bremen.de/suse/11.1 \

packman-mirror

Make sure that either packman.repo or packman-mirror.repo is enabled, not both. Fourth,
install extra packages by clicking on YaST → Software → Software Management. In particular,
packages octave, rasmol, xfig, xmgrace, and many others can be useful. Fifth, configure
printer by clicking on YaST → Hardware → Printer. Sixth, apply online update at the end
by clicking on YaST → Software → Online Update. The kernel is then updated to be version
2.6.27.39-0.2.

Reboot the system and check all changes on settings work as expected. The installation of
openSUSE 11.1 Linux operating system is completed. The system is ready for the installation
of clustering software.

3.2 Compilers: Intel and Open64

Compilers are an important component to a high-performance computing cluster. The GNU
compilers[8] included in the openSUSE Linux 11.1 distribution, gcc 4.3.2 and gfortran 4.3.2 are
installed. In addition to the GNU ones, Intel[9] and Open64[10] compilers are also installed to
the computing cluster. Their installation processes are given in the following two subsections.

Intel compilers

Because library libstdc++.so.5 is required for this version of Intel compilers, packages libstdc
++33, libstdc++33-devel, and libstdc++33-doc are installed by clicking on YaST → Soft-
ware → Software Management prior to installing the Intel compilers.

Intel Fortran (ifort) and C++ (icc) compilers version 11.1.046 are installed to the cluster
server by using packages l_cprof_p_11.1.046_intel64.tgz and l_cproc_p_11.1.046_intel

64.tgz, respectively[9]. These packages are installed to directory /opt/intel/Compiler/11.1/
046/. Installed components include Intel Fortran and C++ compilers, Debugger, MKL, IPP,
and TBB. Mathematical Kernel Library (MKL) offers highly optimized mathematical routines
for high-performance applications. Adding the following lines to user’s personal initialization
file, .bash_profile to sets up the MKL environment at login shell.

source /opt/intel/Compiler/11.1/046/bin/ifortvars.sh \

intel64

source /opt/intel/Compiler/11.1/046/bin/iccvars.sh intel64

Intel MKL Fortran 90 interfaces can be created by makefile at /opt/intel/Compiler/11.1
/046/mkl/interfaces/[blas95,lapack95] as follows. The Fortran 90 interfaces for BLAS are
created by

8 CHAPTER 3. SYSTEM SOFTWARE

cd /opt/intel/Compiler/11.1/046/mkl/interfaces/blas95

make libem64t \

INSTALL_DIR= \

/opt/intel/Compiler/11.1/046/mkl/interfaces/blas95 \

FC=ifort

Library and interface files are generated at /opt/intel/Compiler/11.1/046/mkl/interfaces
/blas95/[lib,include]/. The Fortran 90 interfaces for LAPACK are created by

cd /opt/intel/Compiler/11.1/046/mkl/interfaces/lapack95

make libem64t \

INSTALL_DIR= \

/opt/intel/Compiler/11.1/046/mkl/interfaces/lapack95 \

FC=ifort

Library and interface files are generated at /opt/intel/Compiler/11.1/046/mkl/interfaces
/lapack95/[lib,include]/.

The library of FFTW3 Fortran wrappers to Intel MKL is built by

cd /opt/intel/Compiler/11.1/046/mkl/interfaces/fftw3xf

make libem64t compiler=intel

The library /opt/intel/Compiler/11.1/046/mkl/interfaces/fftw3xf/libfftw3xf_intel.a
is created.

Documentations on the compilers and libraries are at /opt/intel/Compiler/11.1/046/

Documentation/en_US/[documentation_f.htm,documentation_c.htm].

Open64 compilers

Open64 Fortran (openf90), C and C++ (opencc and openCC) compilers version 4.2.2.2.1 are
installed to the cluster server by[10]

rpm --prefix=/opt/x86_open64/4.2.2.2.1 -ivh \

x86_open64-4.2.2.2-1.x86_64.rpm

Open64 compilers are installed to directory /opt/x86_open64/4.2.2.2.1/. Add the following
lines to user’s .bash_profile file to include the directory in the search path.

PATH=$PATH:/opt/x86_open64/4.2.2.2.1/bin

export PATH

User’s guide for Open64 compilers, x86_open64_user_guide.pdf is installed to directory
/opt/x86_open64/4.2.2.2.1/doc/ for future reference.

3.3 Diskless Remote Boot Linux (DRBL)

The installation of the networking system to the computing cluster is greatly simplified by using
the Diskless Remote Boot Linux (DRBL) package[11, 19, 20, 21]. In the process of installing
DRBL, several network services are installed, if not previously, and configured automatically,
including the dynamic host configuration protocol (DHCP)[22], the trivial file transfer protocol
(TFTP), the network file system (NFS), and the network information service (NIS). These
services are required for the operation of a high-performance computing cluster with diskless
clients.

3.3. DISKLESS REMOTE BOOT LINUX (DRBL) 9

DHCP

TFTP

NIS

NFS

ServerClient

Kernel Image

File Systems

Account Information

IP Address

Linux

PXE

Diskless

Figure 3.2: Boot process of the diskless client using DRBL.

At boot time, the client node uses preboot execution environment (PXE)[23] boot agent
to initiate the booting process as demonstrated in Fig. 3.2. The PXE client first requests an
Internet protocol (IP) address from the DHCP server, and then fetches the kernel image from
the server node via the TFTP server1. After the client node is booted, the server file systems
are exported to the client using NFS. User account information is distributed by NIS among
cluster nodes. Hence, no kernel image and no file system are required to physically install on
the client node. A high-performance computing cluster with diskless clients is thus achieved.

Notice that during the installation of the openSUSE Linux system, a hard disk partition on
the server node, /tftpboot is created. This partition is reserved for the DRBL system. The
installation steps of the DRBL system are itemized below.

1. Turn off that firewall temporarily by YaST → Security and Users → Firewall.

2. Check that “Traditional Method with ifup” mode is used for networking by YaST →

Network Devices → Network Card → Global Options.

3. Check that the interface eth1 is configured for internal network connection with a static
private IP address by YaST → Network Devices → Network Settings.

4. Download, import, and check the golden key by the following commands.

rpm -e --allmatches gpg-pubkey-d7e8df3a-44c6e1d6

wget http://drbl.nchc.org.tw/GPG-KEY-DRBL

rpm --import GPG-KEY-DRBL

rpm -qa gpg-pubkey | grep -i D7E8DF3A

The first command is to remove all existing keys of the DRBL package, and is not required
if the package is being installed for the very first time. The last command is to check
that the key is properly downloaded.

5. Download the DRBL package drbl-1.9.5-42.i386.rpm[11] and then install it by the
following commands.

/opt/drbl/sbin/drblsrv -u

rpm -Uvh drbl-1.9.5-42.i386.rpm

1Recall that during the installation of the openSUSE Linux system, tftp is favored over aftp to resolve a

package conflict. The reason for this choice becomes obvious at this point. DRBL uses tftp rather than aftp.

10 CHAPTER 3. SYSTEM SOFTWARE

The first command is to uninstall DRBL if it is previously installed. The DRBL package
installed on this cluster is version 1.9.5-42.

6. Install the DRBL server as root by

/opt/drbl/sbin/drblsrv -i

7. Change the following lines in /opt/drbl/conf/drbl.conf for the server node to export
its /work (read-write) and /srv (read-only) directories to clients.

diskless_root_dir_ro_user_add="/srv"

diskless_root_dir_rw_user_add="/work"

On this computing cluster, directories /work and /srv are intended for temporary working
space and long-term backup storage, respectively.

8. Add the following line to /opt/drbl/conf/client-append-fstab for each client to
mount /nodewk on device /dev/sda2 of their local solid-state disk after booting.

/dev/sda1 swap swap defaults 0 0

/dev/sda2 /nodewk ext3 defaults 0 0

On each client, two partitions, /dev/sda1 (2GB) and /dev/sda2 (6GB,ext3) are created
on the SATA solid-state disk (8GB) with the following commands.

fdisk /dev/sda

mke2fs -c -t ext3 /dev/sda2

mkswap -c /dev/sda1

9. Add the following lines to /opt/drbl/conf/client-ip-hostname for the clients to have
pre-assigned node names.

192.168.1.12 xeon12

192.168.1.13 xeon13

192.168.1.14 xeon14

The names and IP addresses of the client nodes are listed in the file.

10. Add the following line to /opt/drbl/conf/client-extra-service for the clients to start
NTP service automatically at boot.

service_extra_added="ntp"

11. Run as a super user

/opt/drbl/sbin/drblpush -i

to set up DRBL. The NIS/YP domainname for this cluster is chosen to be xeoncluster.
2048 MBytes are allocated for swap on each client. Full DRBL mode and no clonzilla are
selected. In the process, the MAC addresses of the clients are collected, and the contents
are stored in file /etc/drbl/macadr-eth1.txt. After running this command, the firewall
is turned back on automatically.

3.3. DISKLESS REMOTE BOOT LINUX (DRBL) 11

12. Change the firewall settings by clicking on YaST → Security and Users → Firewall →
Select “Enable Firewall Automatic Starting” in the “Start-Up” section, and configure
interfaces eth0 and eth1 to be “External Zone” and “Internal Zone,” respectively, in the
“Interfaces” section.

13. After installing or updating software, the following command can be used to update the
clients if the settings saved in /etc/drbl/drblpush.conf are to be reused.

/opt/drbl/sbin/drblpush -c /etc/drbl/drblpush.conf

A few tips on the usage of DRBL are given below.

1. All clients can be shut down using the following steps on the server: (1) Become root if
starting with being a regular user; (2) Issue /opt/drbl/sbin/dcs; (3) Select item “All
Select all clients” of the menu; (4) Select “shutdown - Shutdown client now.” All clients
are shut down and powered off properly after these steps.

2. The client mode can be restored to its first installation of this system by the following
steps on the server: (1) Become root; (2) Issue /opt/drbl/sbin/dcs; (3) Select item
“All Select all clients” of the menu; (4) Select “remote-linux-txt - Client remote Linux,
text mode, powerful client.”

3. The command /opt/drbl/bin/drbl-doit is useful for cluster administration. For ex-
ample,

/opt/drbl/bin/drbl-doit uptime

sudo /opt/drbl/bin/drbl-doit -u root reboot

sudo /opt/drbl/bin/drbl-doit -u root /sbin/poweroff

sudo /opt/drbl/bin/drbl-doit -u root shutdown -h now

The first command shows the uptime of each client. The second command reboots all
clients. The last two commands shut down all clients. The following lines can be added
to user’s ~/.bash_profile for the DRBL executables to be included in the search path.

Environment for DRBL

PATH=$PATH:/opt/drbl/bin

export PATH

The BIOS of the motherboard is AMIBIOS version V3.04. The PXE boots of the server
and the clients have to be set differently by starting the BIOS setup utility to change the BIOS
settings. The BIOS setup utility can be involved on each node at BIOS boot time. The PXE
boot of the server is disabled by clicking on Chipset → South Bridge → Lan[1,2] Enabled →

Lan[1,2] OP-ROM Disabled. On the contrary, the PXE boot of each client has to be enabled
by clicking on Chipset → South Bridge → Lan[1,2] Enabled → Lan1 OP-ROM Enabled and
Lan2 OP-ROM Disabled.

With these settings of DRBL and motherboard BIOS, the diskless clients can be booted
after the server is properly booted. This concludes the installation of the DRBL package.

12 CHAPTER 3. SYSTEM SOFTWARE

3.4 Network Time Protocol (NTP)

The network time protocol (NTP) synchronizes the system time of all nodes by connecting the
cluster to an external network time server. NTP has to be configured properly for all cluster
nodes to work in unison.

Package ntp is included with the openSUSE Linux 11.1 distribution, and is already installed
during the installation process of the operating system. NTP is configured by clicking on
YaST → Network Services → NTP Configuration. Select “Start NTP daemon: Now and
On” and add a time server in the “General Settings” section. For this cluster, the time server
time.stdtime.gov.tw is selected. In the “Security Settings” section, select “Run NTP Daemon
in Chroot Jail,” and select “Open Port in Firewall” and then enable both network interfaces
eth0 and eth1 through “Firewall Details.”

After the above configuration step, a port will be opened on the firewall for the NTP daemon.
This can be checked by clicking on YaST → Security and Users → Firewall → Interfaces. The
NTP daemon, xntpd is added to the “External Zone.”

The following line is added to /etc/ntp.conf after this administration step.

server time.stdtime.gov.tw iburst

Update the DRBL clients by command,

/opt/drbl/sbin/drblpush -c /etc/drbl/drblpush.conf

After this updating command, the /etc/ntp.conf file of each client also contains the above
server line; the /etc/ntp.conf file of the server is modified by DRBL by appending a few lines
starting with restrict. On the server, either remove the lines added to the /etc/ntp.conf

file by DRBL or comment out the following line for the NTP to function properly.

#restrict default ignore

The NTP service is thus configured for temporal synchronization between all cluster nodes.

3.5 Secure Shell (SSH)

On this computing cluster, the secure shell (SSH) is used for logging into a cluster node and
for executing commands on a cluster node. Properly configured SSH allows users to log into
a cluster node from another without having to enter passwords. This trusted communication
between nodes is a required status for a high-performance computing cluster.

SSH is installed with the installation process of the opensSUSE Linux 11.1 distribution.
SSH can be activated using the system administration tool by clicking on YaST → System →

System Service (Runlevel) → Enable sshd.
For a regular user, SSH is configured with the following steps.

1. Generate authorization keys by

chmod 700 ~/.ssh

cd ~/.ssh

ssh-keygen

chmod 644 ~/.ssh/id_rsa.pub

cp -a ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys

Files ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub are generated by sh-keygen.

3.6. MESSAGE PASSING INTERFACE: MPICH2 13

2. The user remotely logs on each client from the server by

ssh xeon[12-14]

with password to add client informations to ~/.ssh/known_hosts if it is the very first
time for the user to log on. After these steps, the regular user can remotely log on a
computing node from another without having to enter password.

For the super user, slightly more complicated steps are followed to configure SSH.

1. Log on as root and repeat the two steps by which a regular user uses to generate the
authorization keys and client information. Steps same as a regular user are performed for
the root user.

2. Copy the authorization keys and all other files in directory /root/.ssh/ to each client
by

cd /root/.ssh

for i in 12 13 14

do

cp -a authorized_keys id_rsa id_rsa.pub known_hosts \

/tftpboot/nodes/192.168.1.$i/root/.ssh

done

The last step is required on this cluster because the directory /root of each client is actually
exported from the directory /tftpboot/nodes/192.168.1.$i/root/ of the server in the DRBL
construct. After these steps, the root user can remotely log on each computing node from
another without having to enter password.

3.6 Message Passing Interface: MPICH2

The message passing interface (MPI) is used for parallelized applications[24, 25, 26]. In par-
ticular, MPI Chameleon (MPICH2[15] and MPICH[16]) implementations are installed on this
computing cluster. MPICH2 is a newer implementation than MPICH. In contrast to MPICH,
a multi-purpose daemon of MPICH2 has to be started on all clients participating in a parallel
computation. The ring of daemons is used for communication between computing nodes in the
MPICH2 implementation.

MPICH and MPICH2 will be installed from scratch using three different compilers on this
cluster. Before the installation, notice that, in addition to MPICH, openSUSE 11.1 has other
flavors of MPI bundled with the distribution. These have to be removed to avoid confusion.
After backing up the factory-installed MPICH by the command,

cp -a /opt/mpich /opt/mpich.opensuse.orig

packages mpich-devel-1.2.7p1-112, mpich-1.2.7p1-112, lam-devel-7.1.4-11,
lam-7.1.4-11, openmpi-devel-1.2.2-19, openmpi-1.2.2-19 mvapich2-devel-0.9.8-26,
mvapich2-0.9.8-26, pvm-devel-3.4.5-89, pvm-3.4.5-89, and mpi-selector-1.0.0-17 are
all removed by clicking on YaST → Software → Software Management if they are ever installed.

MPICH2 version 1.2.1 and MPICH version 1.2.7p1 (release 2005/11/04) will be compiled
by Intel, Open64, and GNU compilers, and installed in separate directories on this computing
cluster. The installation processes of MPICH2 version 1.2.1 will be first illustrated in this sub-
sections; while those of MPICH version 1.2.7p1 will presented in the next subsection. MPICH
is installed on this computer cluster only for backward compatibility. Usage of MPICH2 is
encouraged over MPICH because the development of MPICH is no longer continued.

14 CHAPTER 3. SYSTEM SOFTWARE

MPICH2 compiled by Intel compilers

MPICH2 version 1.2.1 package mpich2-1.2.1.tar.gz is compiled with Intel compilers version
11.1.046 and installed with the following steps.

1. Unpack the package in a work directory by command,

tar -xvzpf mpich2-1.2.1.tar.gz

2. Configure and build the package in the work directory by

CC=icc

CXX=icc

F77=ifort

F90=ifort

export CC CXX F77 F90

./configure \

--prefix=/opt/mpich2/1.2.1/intel-11.1.046 \

--with-pm=mpd --with-device=ch3:ssm \

| tee configure.log

make | tee make.log

make install | tee install.log

The MPICH2 package compiled by the Intel compilers is installed to directory /opt/mpich2
/1.2.1/intel-11.1.046. Documentation files in HTML format start with /opt/mpich2/
1.2.1/intel-11.1.046/www/index.htm. The configuration and make log files generated
in this step are copied to directory /opt/mpich2/1.2.1/intel-11.1.046/log/ for future
reference.

3. Add the following lines to user’s ~/.bash_profile for the executables and documenta-
tions to be accessible.

PATH=/opt/mpich2/1.2.1/intel-11.1.046/bin:$PATH

export PATH

MANPATH= \

/opt/mpich2/1.2.1/intel-11.1.046/share/man:$MANPATH

export MANPATH

4. Perform the following tests.

which mpd

which mpicc

which mpiexec

which mpirun

To avoid confusion, the PATH setting in ~/.bash_profile pointing to MPICH version
1.2.7p1 can be disabled first, or set the search path of MPICH2 before MPICH. MPICH2
and MPICH both have commands with common names: mpirun, mpicc, mpicxx, mpif77,
and mpif90. This can be the source of confusion.

5. Create file ~/.mpd.conf with the following line, and set the file protection mode to be
600.

3.6. MESSAGE PASSING INTERFACE: MPICH2 15

secretword=quantum-xeoncluster

6. Create file mpd.hosts with the following contents

xeon12

xeon13

xeon14

This file is saved as /etc/mpd.hosts with the protection mode of 644. This step is not
necessary; it is done only for convenience of usage.

7. Start the ring of daemons by the following command and options,

mpdboot -n 4 -f /etc/mpd.hosts --ncpus=8 \

--ifhn=sham-eth1

This command sets up a daemon ring of 4 machines: 1 server and 3 client nodes. Option -n
is the number of nodes to start, and it is 4 because there are 4 nodes on this computing
cluster. Option --ncpus=8 is used because there are eight CPU cores on each node.
Option --ifhn=sham-eth1 has to be used because there are two network interfaces on
each cluster node. The one for cluster internal communication is interface sham-eth1. A
partial list of /etc/hosts is as follows.

127.0.0.1 localhost

127.0.0.2 sham.ncyu.edu.tw sham

140.130.91.204 sham.ncyu.edu.tw sham

192.168.1.15 sham-eth1

sham-eth1 and sham refer to the external and internal network interfaces, respectively.
The booted ring of daemons can be checked by command

mpdtrace -l

The ring of daemons can be terminated by command

mpdallexit

8. Do a simple test on the ring with

mpiexec -n 24 hostname

Option -n is the number of processes to be use for a computation. This command always
involves the server in the computation job. If the server is to be excluded from the
computation job, the following command can be used,

mpiexec -machinefile /etc/mpd.mach -n 24 hostname

/etc/mpd.mach is a user-created file with the following contents

xeon12:8

xeon13:8

xeon14:8

16 CHAPTER 3. SYSTEM SOFTWARE

This file does not have to be placed in /etc, it is there with the file protection mode of
644 just for the convenience of usage. The number of processes of 24 following the option
-n is the maximal value for this system. Values over 24 will not run on this cluster.

9. The documentations of MPICH2 version 1.2.1 in the HTML format is located at
/opt/mpich2/1.2.1/intel-11.1.046/share/doc/index.htm

10. Compile the example in /opt/mpich2/1.2.1/intel-11.1.046/share/examples_logging
/cpi.c by command

mpicc -o cpi cpi.c

after copying it a a work directory. Run the compiled binaries by command

mpiexec -machinefile /etc/mpd.mach -np 24 cpi

or

mpiexec -np 24 cpi

The first command will not involve the server node in the computation; while the sec-
ond will. Other examples in directories examples_collchk, examples_graphics, and
examples_logging can be compiled and tested with similar methods.

11. For future reference, save the unpacked source tree of mpich2-1.2.1.tar.gz to
/opt/mpich2/1.2.1/source/.

12. Create an executable ~/bin/mpich2-mpdboot with the following contents.

mpdboot -n 4 -f /etc/mpd.hosts --ncpus=8 \

--ifhn=sham-eth1

Then set the protection mode of the file by

chmod 755 ~/bin/mpich2-mpdboot

Add the following line to ~/.bash_profile

Add path to local executables

setenv PATH ${HOME}/bin:${PATH}

so that the local executables are on the search path. With these settings, the ring of
MPICH2 daemons can be started easily with the command mpich2-mpdboot.

3.6. MESSAGE PASSING INTERFACE: MPICH2 17

MPICH2 compiled by Open64 compilers

MPICH2 version 1.2.1 package mpich2-1.2.1.tar.gz is compiled with Open64 compilers ver-
sion 4.2.2.2 and installed with the following steps.

1. Unpack the package mpich2-1.2.1.tar.gz to a work directory.

2. Configure and build the package in the work directory by

CC=opencc

CXX=openCC

FC=openf90

F90=openf90

export CC CXX FC F90

./configure \

--prefix=/opt/mpich2/1.2.1/open64-4.2.2.2 \

--with-pm=mpd --with-device=ch3:ssm \

--disable-cxx | tee configure.log

make | tee make.log

make install | tee install.log

The MPICH2 package compiled by Open64 compilers is installed to directory /opt/mpich2
/1.2.1/open64-4.2.2.2. The configuration and make log files generated in this instal-
lation step are copied to directory /opt/mpich2/1.2.1/open64-4.2.2.2/log/ for future
reference.

3. Add the following lines to user’s ~/.bash_profile for the executables an manual pages
to be on the search path.

PATH=/opt/mpich2/1.2.1/open64-4.2.2.2/bin:$PATH

export PATH

MANPATH=/opt/mpich2/1.2.1/open64-4.2.2.2/man:$MANPATH

export MANPATH

4. Perform the following tests.

which mpd

which mpicc

which mpiexec

which mpirun

To avoid confusion, the PATH setting in ~/.bash_profile pointing to MPICH version
1.2.7p1 can be disabled first, or set the search path of MPICH2 before MPICH.

5. Create file ~/.mpd.conf with the following line, and set the file protection mode to be
600.

secretword=quantum-xeoncluster

6. Create file mpd.hosts with the following contents

xeon12

xeon13

xeon14

18 CHAPTER 3. SYSTEM SOFTWARE

This file is saved in /etc/mpd.hosts with the protection mode of 644. This step is not
necessary; it is done only for convenience of usage.

7. Start the ring of daemons by the following command and options,

mpdboot -n 4 -f /etc/mpd.hosts --ncpus=8 \

--ifhn=sham-eth1

This command sets up a daemon ring of 4 machines: 1 server and 3 client nodes. For the
meanings of the options of command mpdboot, refer to Subsection 3.6

8. Perform tests with methods similar to Subsection 3.6

MPICH2 compiled by GNU compilers

MPICH2 version 1.2.1 package mpich2-1.2.1.tar.gz is compiled with GNU compilers version
4.3.2 and installed with the following steps.

1. Unpack the package mpich2-1.2.1.tar.gz to a work directory.

2. Configure and build the package by

CC=gcc

CXX=gcc

F77=gfortran

F90=gfortran

export CC CXX F77 F90

./configure --prefix=/opt/mpich2/1.2.1/gnu-4.3.2 \

--with-pm=mpd --with-device=ch3:ssm \

--disable-cxx | tee configure.log

make | tee make.log

make install | tee install.log

The MPICH2 package compiled by the GNU compilers is installed to directory
/opt/mpich2/1.2.1/gnu-4.3.2. The configuration and make log files generated in this
step are copied to /opt/mpich2/1.2.1/gnu-4.3.2/log/ for future reference.

3. The rest of the installation and testing steps are very similar to Subsection 3.6

3.7 Message Passing Interface: MPICH

In this subsection, the compilation, installation, and configuration of MPICH version 1.2.7p1
(release 2005/11/04) will be illustrated.

Before the installation, other flavors of MPI packages bundled with the openSUSE 11.1
distribution have to removed with methods given in the second paragraph of Subsection 3.6 to
avoid possible confusion.

MPICH version 1.2.7p1 will be compiled by Intel, Open64, and GNU compilers, and installed
to different directories. The installation processes will be presented in the following subsections.

3.7. MESSAGE PASSING INTERFACE: MPICH 19

MPICH compiled by Intel compilers

The MPICH version 1.2.7p1 package, mpich.tar.gz is compiled by the Intel compilers version
11.1.046 and is installed to the computing cluster with the following steps.

1. Unpack the package to a work directory, /work/mpich by

tar -xvzpf mpich.tar.gz

2. Configure and build the package by

cd /work/mpich

CC=icc

CXX=icc

FC=ifort

F90=ifort

export CC CXX FC F90

./configure \

--prefix=/opt/mpich/1.2.7p1/intel-11.1.046 \

--with-device=ch_p4 --with-comm=sharedc \

-rsh=ssh | tee configure.log

make | tee make.log

3. The machine file at /work/mpich/util/machines/machines.LINUX is modified to be as
follows.

xeon12:8

xeon13:8

xeon14:8

4. Test the networking between nodes by

/work/mpich/bin/tstmachines -v

5. Install the package by

su -

cd /work/mpich

make install

After this step, the MPICH package version 1.2.7p1 compiled by the Intel compilers is
then installed to the directory /opt/mpich/1.2.7p1/intel-11.1.046/.

6. Compile C and Fortran testing codes by

/opt/mpich/1.2.7p1/intel/bin/mpicc -o cpi cpi.c

/opt/mpich/1.2.7p1/intel/bin/mpif90 \

-o pi3f90 pi3f90.f90

7. Run the testing codes by, for example,

/opt/mpich/1.2.7p1/intel/bin/mpirun -nolocal -np 8 cpi

20 CHAPTER 3. SYSTEM SOFTWARE

Option -nolocal excludes the server from the computation job. Option -np specifies
the number of processors to be involved in the MPI run. For the present hardware, the
maximal number that can be set for option -np is 24, in which case all of the client
processors on this cluster are involved with the MPI run.

8. Add the following lines to user’s ~/.bash_profile for the MPICH executables and doc-
umentations to be on the user’s search path.

Environment for MPICH 1.2.7p1 compiled by

Intel compilers version 11.1.046

PATH=/opt/mpich/1.2.7p1/intel-11.1.046/bin:$PATH

export PATH

MANPATH=/opt/mpich/1.2.7p1/intel-11.1.046/man:$MANPATH

export MANPATH

For MPICH documentations in the HTML format, use a browser to read
/opt/mpich/1.2.7p1/intel-11.1.046/www/index.html.

Three categories of testing codes are provided by MPICH version 1.2.7p1. The testing
steps and results of the first two categories are given below. The third category is performance
testing. Its testing steps and results will be presented in Subsection 3.7.

First, several testing codes in C, FORTRAN, and Fortran 90 are included in the directory
/work/mpich/mpich-1.2.7p1/examples/basic/. They can be compiled and tested with sim-
ilar methods mentioned above. Codes cpi.c, srtest.c, systest.c, unsafe.c, fpi.f, and
pi3f90.f90 compile and run successfully.

Second, codes in /work/mpich/mpich-1.2.7p1/examples/test/ are tested by steps as
follows. A line in configure of the above directory is changed to be

MPIRUNARGS=’"-nolocal"’

The option -nolocal is needed for this cluster. Use the following commands to perform the
test.

cd /work/mpich/mpich-1.2.7p1/examples/test/

./configure \

-mpichpath=/opt/mpich/1.2.7p1/intel-11.1.046/bin

make testing | tee testing.log

Results reported by the coeds show that the tests are successful.

MPICH compiled by Open64 compilers

The MPICH version 1.2.7p1 package, mpich.tar.gz is compiled by Open64 compilers version
4.2.2.2 and is installed to the computing cluster using the following steps.

1. Unpack the package to a work directory, say /work/mpich.

2. Configure and build the package by

cd /work/mpich

CC=opencc

CXX=openCC

FC=openf90

F90=openf90

3.7. MESSAGE PASSING INTERFACE: MPICH 21

export CC CXX FC F90

./configure \

--prefix=/opt/mpich/1.2.7p1/open64-4.2.2.2 \

--with-device=ch_p4 --with-comm=shared \

-rsh=ssh | tee configure.log

make | tee make.log

3. The machine file at /work/mpich/util/machines/machines.LINUX is modified to be as
follows.

xeon12:8

xeon13:8

xeon14:8

4. Test the network connection between nodes by

/work/mpich/bin/tstmachines -v

5. Install the package by

cd /work/mpich/

make install

MPICH version 1.2.7p1 compiled by the Open64 compilers is then installed to the direc-
tory /opt/mpich/1.2.7p1/open64-4.2.2.2/.

6. Add the following lines to user’s ~/.bash_profile for the MPICH executables and doc-
umentations on the the search path.

Environment for MPICH 1.2.7p1 compiled by

X86 Open64 compilers version 4.2.2.2

PATH=/opt/mpich/1.2.7p1/open64-4.2.2.2/bin:$PATH

export PATH

MANPATH=/opt/mpich/1.2.7p1/open64-4.2.2.2/man:$MANPATH

export MANPATH

The testing steps for the three categories of testing codes provided by MPICH version 1.2.7p1
are the same as in Subsection 3.7. Several testing C and Fortran 90 codes in /work/mpich/mpich
-1.2.7p1/examples/basic/ compile and run successfully, including cpi.c, srtest.c,
systest.c, unsafe.c, and pi3f90.f90.

MPICH compiled by GNU compilers

The MPICH version 1.2.7p1 package, mpich.tar.gz is compiled by GNU compilers version
4.3.2 and is installed to the computing cluster using the following steps.

1. Unpack the package to a work directory, say /work/mpich.

2. Configure and build the package by

22 CHAPTER 3. SYSTEM SOFTWARE

CC=gcc

CXX=gcc

FC=gfortran

F90=gfortran

export CC CXX FC F90

./configure --prefix=/opt/mpich/1.2.7p1/gnu-4.3.2 \

--with-device=ch_p4 --with-comm=shared \

-rsh=ssh | tee configure.log

make | tee make.log

Notice that mpif77 and mpif90 are not created in /work/mpich/bin because gfortran

does not support Fortran 90.

3. The machine file at /work/mpich/util/machines/machines.LINUX is modified to be as
follows.

xeon12:8

xeon13:8

xeon14:8

4. Test the network connection between nodes by

/work/mpich/bin/tstmachines -v

5. Install the package compiled by the GNU compilers by

cd /work/mpich/

make install

MPICH version 1.2.7p1 is installed to /opt/mpich/1.2.7p1/gnu-4.3.2/.

6. Add the following lines to user’s ~/.bash_profile for the MPICH binaries and docu-
mentations to be on the user’s search path.

Environment for MPICH 1.2.7p1 compiled by

GNU compilers version 4.3.2

PATH=/opt/mpich/1.2.7p1/gnu-4.3.2/bin:$PATH

export PATH

MANPATH=/opt/mpich/1.2.7p1/gnu-4.3.2/man:$MANPATH

export MANPATH

The testing steps for the three categories of testing codes provided by MPICH version 1.2.7p1
are the same as in Subsection 3.7. Some testing C codes in /work/mpich/mpich-1.2.7p1/

examples/basic/ compile and run successfully, including cpi.c, srtest.c, systest.c, and
unsafe.c.

3.7. MESSAGE PASSING INTERFACE: MPICH 23

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 0 200 400 600 800 1000 1200

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (xeon12) type blocking

Figure 3.3: MPICH compiled by Intel compilers: type blocking (pt2ptshort).

Performance of MPICH

The codes in directory /work/mpich/mpich-1.2.7p1/examples/perftest/ are for perfor-
mance testing. They are compiled and tested as follows.

Configure the performance testing codes with command

cd /work/mpich/mpich/1.2.7p1/examples/test/

./configure --with-mpich

Change the maximum run time of mpptest.c by modifying the following line to be

static double max_run_time = 150.0*60.0;

Change the following line in runmpptest to be

set MPIRUNOPT = "-nolocal"

Change the following lines in rungoptest to be

set MPIRUNOPT = "-nolocal"

set MAXNP = 24

Then make the binaries by

make

Based on the suggestion in README, create and run the testing script Run_all with the
following contents

#! /bin/sh

./runmpptest -short -pair -blocking -givedy -gnuplot \

-fname pt2ptshort.mpl

./runmpptest -long -pair -blocking -givedy -gnuplot \

24 CHAPTER 3. SYSTEM SOFTWARE

 20

 30

 40

 50

 60

 70

 80

 90

 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (xeon12) type blocking

Figure 3.4: MPICH compiled by Intel compilers: type blocking (pt2ptlong).

 20

 30

 40

 50

 60

 70

 80

 90

 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (xeon12) type nonblocking

Figure 3.5: MPICH compiled by Intel compilers: type non-blocking (npt2ptlong).

3.7. MESSAGE PASSING INTERFACE: MPICH 25

 66.4

 66.6

 66.8

 67

 67.2

 67.4

 67.6

 67.8

 68

 0 200 400 600 800 1000 1200

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (xeon12) type blocking-bisect

Figure 3.6: MPICH compiled by Intel compilers: type blocking bisection (bisectshort).

 105

 110

 115

 120

 125

 130

 135

 140

 145

 150

 155

 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (xeon12) type blocking-bisect

Figure 3.7: MPICH compiled by Intel compilers: type blocking bisection (bisectlong).

26 CHAPTER 3. SYSTEM SOFTWARE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25

tim
e

(u
s)

Processes

Comm Perf for MPI (xeon12) type scatter

0
256
512
768

1024

Figure 3.8: MPICH compiled by Intel compilers: type scatter (bcast).
.

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 0 200 400 600 800 1000 1200

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (xeon12) type blocking

Figure 3.9: MPICH compiled by Open64 compilers: type blocking (pt2ptshort).

3.7. MESSAGE PASSING INTERFACE: MPICH 27

 20

 30

 40

 50

 60

 70

 80

 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (xeon12) type blocking

Figure 3.10: MPICH compiled by Open64 compilers: type blocking (pt2ptlong).

 20

 30

 40

 50

 60

 70

 80

 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (xeon12) type nonblocking

Figure 3.11: MPICH compiled by Open64 compilers: type non-blocking (npt2ptlong).

28 CHAPTER 3. SYSTEM SOFTWARE

 63

 63.5

 64

 64.5

 65

 65.5

 66

 0 200 400 600 800 1000 1200

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (xeon12) type blocking-bisect

Figure 3.12: MPICH compiled by Open64 compilers: type blocking bisection (bisectshort).

 130

 135

 140

 145

 150

 155

 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (xeon12) type blocking-bisect

Figure 3.13: MPICH compiled by Open64 compilers: type blocking bisection (bisectlong).

3.8. QUEUING SYSTEM: TORQUE (OPENPBS) 29

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25

tim
e

(u
s)

Processes

Comm Perf for MPI (xeon12) type scatter

0
256
512
768

1024

Figure 3.14: MPICH compiled by Open64 compilers: type scatter (bcast).

-fname pt2ptlong.mpl

./runmpptest -long -pair -nonblocking -givedy -gnuplot \

-fname nbpt2ptlong.mpl

./runmpptest -np 24 -bisect -short -blocking -gnuplot \

-fname bisectshort.mpl

./runmpptest -np 24 -bisect -long -blocking -gnuplot \

-fname bisectlong.mpl

./rungoptest -maxnp 24 -add -bcast -gnuplot \

-fname bcast.mpl

The communication performances of MPICH compiled by the Intel compilers obtained by
codes pt2ptshort, pt2ptlong, nbpt2ptlong, bisectshort, bisectlong, and bcast are shown
in Figs. 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8, respectively. The communication performances of MPICH
compiled by the Open64 compilers are plotted in Figs. 3.9 to 3.13. Comparison of the perfor-
mances of MPICH compiled the Intel and Open64 compilers shows that their performances are
hardly distinguishable.

3.8 Queuing System: Torque (openPBS)

For high-performance computing clusters, a queuing system is an important component for
efficient usage of system resources. The portable batch system, Torque (openPBS) is installed
to the cluster[12]. Torque (openPBS) consists of three daemons: a job server, a job scheduler,
and a job executor. The job server is responsible for services such as receiving and creating
batch jobs, modifying and protecting the jobs, and running the job. The job scheduler controls
the scheduling policies on the batch jobs. The job executor on the client is a machine-oriented
mini-server (MOM server) that places the job into execution and returns the results to the
server as it receives commands from the server. The queuing server and the scheduler run on
the server of the computing cluster only; while the MOM server runs on every client node.

30 CHAPTER 3. SYSTEM SOFTWARE

Installation

On this computing cluster, Torque (openPBS) is installed using package torque-2.4.5.tar.gz.
Queuing properties are configured after the queuing system is started. The steps for the instal-
lation and configuration of the queuing system are listed below.

1. Unpack the downloaded source at /opt/torque/2.4.5/source/.

2. Configure, make, and install with the following commands.

cd /opt/torque/2.4.5/source/torque-2.4.5

./configure --prefix=/opt/torque/2.4.5 \

--with-server-home=/var/spool/torque \

--with-default-server=sham \

--with-sched=c --with-sched-code=fifo

make

make install

3. Create the node description file /var/spool/torque/server_priv/nodes. The pbs_server
communicates with each of the MOMs running on clients. The contents of the file are as
follows.

xeon12 np=8

xeon13 np=8

xeon14 np=8

Using this node description file, pbs_server communicate with the clients on which
pbs_mom is up.

4. Create the server description file /var/spool/torque/server_priv/serv er_name. This
file specifies the name of PBS server. The contents of the file are as follows.

sham

#sham-eth1

The line starting with # is a comment.

5. Create the machine oriented mini-server (MOM) configuration file /var/spool/torque/
mom_priv/config. with the following contents.

$pbsserver sham-eth1

$logevent 127

$restricted *.ncyu.edu.tw

$usecp *:/home /home

$usecp *:/work /work

$usecp *:/srv /srv

The PBS server uses the internal network interface sham-eth1 to communicate with the
clients. The three lines starting with $usecp are used because directories /home, /work,
and /srv of the server are NFS-mounted on each client. It is more efficient to use the
cp command to transfer files on these directories between server and client nodes than to
use the network interface. Unnecessary network load is avoided.

3.8. QUEUING SYSTEM: TORQUE (OPENPBS) 31

6. Add the following line to user’s ~/.bash_profile for the man pages and commands to
be accessible.

setenv PATH ${PATH}:/opt/torque/2.4.5/bin

setenv MANPATH "$MANPATH":/opt/torque/2.4.5/man

7. Run PBS for the first time with the following commands to bring up and configure
pbs_server.

/opt/torque/2.4.5/sbin/pbs_server -t create

/opt/torque/2.4.5/sbin/pbs_sched

8. Create the queue configuration file /opt/torque/2.4.5/queue-2.4.5 and configure queue
properties by

/opt/torque/2.4.5/bin/qmgr < /opt/torque/2.4.5/queue-2.4.5

The contents of /opt/torque/2.4.5/queue-2.4.5 are listed below.

#

Create queues and set their attributes.

#

#

Create and define queue default

#

create queue default

set queue default queue_type = execution

set queue default priority = 80

set queue default max_running = 32

set queue default resources_max.cput = 1440:00:00

set queue default resources_min.cput = 100:00:01

set queue default resources_default.cput = 100:00:01

set queue default resources_default.walltime = 240:00:00

set queue default max_user_run = 32

set queue default enabled = true

set queue default started = true

#

Create and define queue batch

#

create queue batch

set queue batch queue_type = execution

set queue batch priority = 60

set queue batch max_running = 32

set queue batch resources_max.cput = 1440:00:00

set queue batch resources_min.cput = 100:00:01

set queue batch resources_default.cput = 1440:00:01

set queue batch resources_default.walltime = 240:00:00

set queue batch max_user_run = 32

set queue batch enabled = true

set queue batch started = true

32 CHAPTER 3. SYSTEM SOFTWARE

#

Set server attributes

#

set server scheduling = true

set server acl_host_enable = true

set server acl_hosts = sham

set server managers = root@sham.ncyu.edu.tw

set server managers += quantum@sham.ncyu.edu.tw

set server operators = root@sham.ncyu.edu.tw

set server operators += quantum@sham.ncyu.edu.tw

set server default_queue = default

set server log_events = 127

set server scheduler_iteration = 600

set server node_check_rate = 150

set server tcp_timeout = 6

set server mom_job_sync = true

set server keep_completed = 300

set server submit_hosts = sham

In this queue property file, two job queues, default and batch, are defined. The server
attributes are also set at the end. Check and save the queue configuration by the following
two commands, respectively.

/opt/torque/2.4.5/bin/qmgr -c "list server"

/opt/torque/2.4.5/bin/qmgr -c "print server" > \

/opt/torque/2.4.5/queue-2.4.5.saved

9. Create the pbs_server boot script file /etc/init.d/pbs_server by the following steps.

cd /opt/torque/2.4.5/source/torque-2.4.5/contrib/

cp init.d/suse.pbs_server /etc/init.d/pbs_server.orig

cp /etc/init.d/pbs_server.orig /etc/init.d/pbs_server

chmod 755 /etc/init.d/pbs_server

chmod 644 /etc/init.d/pbs_server.orig

Change the following lines in the present /etc/init.d/pbs_server file,

PBS_DAEMON=/opt/torque/2.4.5/sbin/pbs_server

PBS_HOME=/var/spool/torque

Make symbolic links by clicking on YaST → System → System Service (Runlevel) →

Enable pbs_server. The following links are made by the above administration step.

/etc/init.d/rc[2,3,5].d/K01pbs_server -> ../pbs_server

/etc/init.d/rc[2,3,5].d/S07pbs_server -> ../pbs_server

10. Create the pbs_sched boot script file /etc/init.d/pbs_sched by the following steps.

cd /opt/torque/2.4.5/source/torque-2.4.5/contrib/

cp init.d/suse.pbs_sched /etc/init.d/pbs_sched.orig

cp /etc/init.d/pbs_sched.orig /etc/init.d/pbs_sched

chmod 755 /etc/init.d/pbs_sched

chmod 644 /etc/init.d/pbs_sched.orig

3.8. QUEUING SYSTEM: TORQUE (OPENPBS) 33

Change the following lines in the current /etc/init.d/pbs_sched file,

PBS_DAEMON=/opt/torque/2.4.5/sbin/pbs_sched

PBS_HOME=/var/spool/torque

Make symbolic links by clicking on YaST → System → System Service (Runlevel) →

Enable pbs_sched. The following links are established after this administration step.

/etc/init.d/rc[2,3,5].d/K01pbs_sched -> ../pbs_sched

/etc/init.d/rc[2,3,5].d/S07pbs_sched -> ../pbs_sched

11. Create the server name file /var/spool/torque/server_name containing the following
lines.

sham

#sham-eth1

The line starting with # is a comment. This step can also be done by command

cp /var/spool/torque/server_priv/server_name \

/var/spool/torque/server_name

12. Copy the directory /var/spool/torque of server to each node with the following script.

for i in 12 13 14

do

cp -a /var/spool/torque \

/tftpboot/nodes/192.168.1.$i/var/spool

cd /tftpboot/nodes/192.168.1.$i/var/spool/torque/

chmod o+t spool undelivered

done

This step is necessary because the /var directory of each client node is mounted from the
/tftpboot/nodes/192.168.1.$i/var/ directory of the server in the DRBL construct.
Files /var/spool/torque/server_name and /var/spool/torque/mom_priv/config

copied in this step are useful for the client.

13. Start pbs_mom daemon on each client manually by the following commands.

ssh xeon[12-14]

su -

/opt/torque/2.4.5/sbin/pbs_mom

ps aux | grep pbs_mom

exit

In this step, the super user logs on each client from the server, starts and checks the
daemon, and exits the client.

14. Create the pbs_mom boot script file /etc/init.d/pbs_mom with the following steps.

34 CHAPTER 3. SYSTEM SOFTWARE

cd /opt/torque/2.4.5/source/torque-2.4.5/contrib/

cp init.d/suse.pbs_mom /etc/init.d/pbs_mom.orig

cp /etc/init.d/pbs_mom.orig /etc/init.d/pbs_mom

chmod 755 /etc/init.d/pbs_mom

chmod 644 /etc/init.d/pbs_mom.orig

Change the following lines in the present /etc/init.d/pbs_mom file.

PBS_DAEMON=/opt/torque/2.4.5/sbin/pbs_mom

PBS_HOME=/var/spool/torque

Make symbolic links by clicking on YaST → System → System Service (Runlevel) →

Enable pbs_mom. The following links are created in this steps.

/etc/init.d/rc[2,3,5].d/K01pbs_mom -> ../pbs_mom

/etc/init.d/rc[2,3,5].d/S10pbs_mom -> ../pbs_mom

15. For the client to start pbs_mom at boot time, change the following line in
/opt/drbl/conf/client-extra-service

service_extra_added="ntp pbs_mom"

and rerun

/opt/drbl/sbin/drblpush -c /etc/drbl/drblpush.conf

Alternatively, use the following commands to set up the boot script file on each client,

for i in 12 13 14

do

cp -a /etc/init.d/pbs_mom* \

/tftpboot/nodes/192.168.1.$i/etc/init.d

cd /tftpboot/nodes/192.168.1.$i/etc/init.d/rc3.d

ln -s ../pbs_mom K01pbs_mom

ln -s ../pbs_mom S10pbs_mom

done

The link to /etc/init.d/pbs_mom of each client is thus established.

This step is necessary because the /etc/ directory of each client node is mounted from
the /tftpboot/nodes/192.168.1.$i/etc/ of the server in the full DRBL mode.

16. Reboot the system and check if pbs_server and pbs_sched are running on the server
and if pbs_mom is running on the clients by the following commands

ps aux | grep pbs

drbl-doit ps aux | grep pbs

17. Add the following lines to user’s ~/.bash_profile

3.8. QUEUING SYSTEM: TORQUE (OPENPBS) 35

Environment for Torque

PATH=$PATH:/opt/torque/2.4.5/bin

export PATH

MANPATH=$MANPATH:/opt/torque/2.4.5/man

export MANPATH

for Torque executables and manual pages to be accessible in the search path.

18. Save administrator’s guide to /opt/torque/2.4.5/source/torque-2.4.5/doc/

TORQUE_Administrators_Guide-2.4.pdf for future reference.

These steps complete the installation of the Torque (openPBS) queuing system on this
computing cluster.

The scheduler provided by Torque (openPBS), pbs_sched is not as versatile as the policy
engine, Maui Scheduler[13]. The Torque scheduler pbs_sched can optionally be replaced by
the Maui Scheduler. The installation steps are presented in the next subsection.

Testing

The queuing system, Torque (openPBS) is tested in this subsection.
Run command

/opt/torque/2.4.5/bin/pbsnodes

If “state=free” is reported for each client, the system is ready for more complicated tests.
Batch scripts will be used to submit jobs to the queuing system. Three examples on batch

scripts will be demonstrated in the following paragraphs.
First, a simple batch example, test.sh is created with the following contents.

#!/bin/sh

Job name

#PBS -N TEST

Output files

#PBS -e test.err

#PBS -o test.log

Quene name

#PBS -q default

Number of nodes

#PBS -l nodes=1:ppn=8

Display the working directory of this job

echo Working directory is $PBS_O_WORKDIR

cd $PBS_O_WORKDIR

echo Running on host ‘hostname‘

echo Time is ‘date‘

echo Directory is ‘pwd‘

Run your executable program

/bin/date

#!/bin/sh

Job name

36 CHAPTER 3. SYSTEM SOFTWARE

#PBS -N TEST

Output files

#PBS -e test.err

#PBS -o test.log

Quene name

#PBS -q default

Number of nodes

#PBS -l nodes=1:ppn=8

Display the working directory of this job

echo Working directory is $PBS_O_WORKDIR

cd $PBS_O_WORKDIR

echo Running on host ‘hostname‘

echo Time is ‘date‘

echo Directory is ‘pwd‘

Run your executable program

/bin/date

The lines starting with #PBS are options to the job submission command, qsub. Run and view
the test with the following commands.

qsub test.sh

qstat -f

less test.out

less test.err

Second, copy /opt/mpich2/1.2.1/intel-11.1.046/share/examples_ graphics/cpi and
/etc/mpd.mach to a work directory, and create a batch file, mpi.sh with the following contents.

#!/bin/sh

Job name

#PBS -N MPICH2

Output files

#PBS -e mpi.err

#PBS -o mpi.log

Quene name

#PBS -q default

Number of nodes

#PBS -l nodes=3:ppn=8

echo Starting at ‘hostname‘ on ‘date‘

if [-n "$PBS_NODEFILE"]; then

if [-f $PBS_NODEFILE]; then

print the node names

echo "Nodes used for this job:"

cat ${PBS_NODEFILE}

fi

fi

Display the job’s working directory

3.8. QUEUING SYSTEM: TORQUE (OPENPBS) 37

echo Working directory is $PBS_O_WORKDIR

cd $PBS_O_WORKDIR

Use mpiexec to run MPICH2 programs

mpiexec -machinefile ./mpd.mach -n 24 cpi

Print end time

echo Job ends at ‘date‘

Before submitting this script, the mpich2 ring daemons have to be booted with commands

~/bin/mpich2-mpdboot

or

mpdboot -n 4 -f /etc/mpd.hosts --ncpus=8 --ifhn=sham-eth1

The machinefile file in command mpiexec has to be copied to the local directory and use relative
path. Run and view the test by

qsub -q batch mpi.sh

qstat -f

less mpi.out

less mpi.err

Third, create and following test batch, mpich2.sh with contents below.

#!/bin/sh

Job name

#PBS -N MPICH2

Output files

#PBS -e mpich2.err

#PBS -o mpich2.log

Quene name

#PBS -q default

Number of nodes

#PBS -l nodes=3:ppn=8

echo Starting at ‘hostname‘ on ‘date‘

if [-n "$PBS_NODEFILE"]; then

if [-f $PBS_NODEFILE]; then

print the node names

echo "Nodes used for this job:"

cat ${PBS_NODEFILE}

fi

fi

Display the job’s working directory

echo Working directory is $PBS_O_WORKDIR

cd $PBS_O_WORKDIR

Use mpiexec to run MPICH2 programs

sort $PBS_NODEFILE | uniq -c | \

38 CHAPTER 3. SYSTEM SOFTWARE

awk ’{ printf ("%s:%s\n", $2, $1) ; }’ > mpd.mach

mpdboot -f mpd.mach -n ‘cat $PBS_NODEFILE | uniq | \

wc -l‘ --ncpus=8

mpiexec -n ‘cat $PBS_NODEFILE | wc -l‘ cpi

mpdallexit

Print end time

echo Job ends at ‘date‘

In this test script, the ring daemon of MPICH2 is started before the execution of the
parallelized binary, cpi, and terminated after its execution. Hence, it does not need to manually
start the ring daemon with command ~/bin/mpich2-mpdboot. The assignment of the nodes to
be used my this script batch is controlled by Torque using the line “#PBS -l nodes=3:ppn=8.”
Unlike the ~/bin/mpich2-mpdboot command, the option “--ifhn=sham-eth1” is not used in
the line beginning with mpdboot for the following reasons. In the present batch script, the
daemon mpd is started on the client nodes where sham-eth1 is not available. In the previous
example, mpd is started by ~/bin/mpich2-mpdboot on the server, hence, the network interface
of the server has to be specified.

The fact that the CPUs employed by this computing cluster are multi-cored has been taken
into account in the above batch script. With this batch script, the cores on the same node will
always be assigned to the same task as long as it is possible. This feature is achieved by the
sort command and the -f mpd.mach option of command mpiexec.

Run and view this test by

qsub -q batch mpich2.sh

qstat -f

less mpich2.out

less mpich2.err

3.9 Scheduler: Maui

Maui is a scheduler that can be used to replace the default scheduler of Torque (openPBS),
pbs_sched. On this computing cluster, Maui Scheduler is installed to the system with the
following steps.

1. Unpack maui-3.2.6p21.tar.gz to /tmp/maui-3.2.6p21/ as a super user.

2. Change to directory /tmp/maui-3.2.6p21/. Configure, make, and install as root with
the following commands

cd /tmp/maui-3.2.6p21

PATH=$PATH:/opt/torque/2.4.5/bin

export PATH

./configure

make

make install

The Maui Scheduler version 3.2.6p21 package is installed to /usr/local/maui. If this
step were performed with a regular user, maui could be run by the user with command
“/usr/local/maui/sbin/maui,” but the super user could not run it. Therefore, per-
forming this step as a super user is required.

3.9. SCHEDULER: MAUI 39

3. Change that the following lines of the file /usr/local/maui/maui.cfg

primary admin must be first in list

ADMIN1 root quantum

The super user, root is the primary administrator of Maui. The regular user, quantum is
added as the secondary administrator so that the regular user account can also interact
with Torque.

4. Check that the administrators listed in $MAUIADMIN are also Torque (openPBS) adminis-
trators. This can be confirmed by checking if the file /opt/torque/2.4.5/queue-2.4.5
applied to qmgr contains the following lines.

set server managers = root@sham.ncyu.edu.tw

set server managers += quantum@sham.ncyu.edu.tw

set server operators = root@sham.ncyu.edu.tw

set server operators += quantum@sham.ncyu.edu.tw

5. For a non-root user to run Maui Scheduler on this computing cluster, the files in /var/spool
/torque/mom_priv/config

must be world-readable and contain the line

$restricted *.ncyu.edu.tw

Change their permissions by

chmod 755 /var/spool/torque/mom_priv

chmod 644 /var/spool/torque/mom_priv/config

6. Check that the default queue is defined in /opt/torque/2.4.5/queue- 2.4.5. This
can be confirmed by checking if the file contains the following line.

set server default_queue = default

7. Check that the following line is in /opt/torque/2.4.5/queue-2.4.5

set server scheduling = true

and the file is applied to qmgr. This will allow Maui to utilize Torque scheduling port to
obtain real-time event information on job and node transitions.

8. Disable pbs_sched at boot time by clicking on YaST → System → System Services
(Runlevel) → Select and disable pbs_sched. The functionality of the Torque (openPBS)
scheduler, pbs_sched will be replaced by the Maui Scheduler.

9. Change or check the following lines are in /usr/local/maui/maui.cfg.

RMCFG[SHAM] TYPE=PBS

SERVERPORT 42559

40 CHAPTER 3. SYSTEM SOFTWARE

The first line specifies PBS as the resource manager. The second line specifies that Maui
uses port SERVERPORT for user-scheduler communication. Use the following commands to
confirm that PBS and Maui are not using overlapping ports.

sudo netstat -pl | grep -i pbs

sudo netstat -pl | grep -i maui

10. Create file /usr/local/maui/maui.ck and change the permissions of some files by the
following commands as a super user

touch /usr/local/maui/maui.ck

chmod 644 /usr/local/maui/maui.ck \

/usr/local/maui/maui.cfg \

/usr/local/maui/maui-private.cfg

11. Add the following lines to user’s ~/.bash_profile for the user to be able to access the
executables of Maui Scheduler.

PATH=$PATH:/usr/local/maui/bin

export PATH

12. Test Maui Scheduler by first changing a line in /usr/local/maui/maui.cfg to be

SERVERMODE TEST

and then start Maui manually by command

/usr/local/maui/sbin/maui

Test to see if Maui commands, showq, showbf, diagnose, and showstats run fine.
Change the line in /usr/local/maui/maui.cfg back to be

SERVERMODE NORMAL

after the testing.

13. Create Maui boot script by the following commands.

su -

cd /tmp/maui-3.2.6p21/contrib/

cp /service-scripts/suse.maui.d /etc/init.d/maui.d

chmod 755 /etc/init.d/maui.d

Change the following line in /etc/init.d/maui.d to point the correct path

MAUI=/usr/local/maui/sbin/maui

14. Enable automatic starting of maui.d on the server at boot time by clicking on YaST →

System → System Services (Runlevel) → Select and enable maui.d at run levels 2, 3, and
5. After this step, the following links are created

3.10. MONITORING SYSTEM: GANGLIA 41

/etc/init.d/rc2.d/K01maui.d -> ../maui.d*

/etc/init.d/rc2.d/S01maui.d -> ../maui.d*

/etc/init.d/rc3.d/K01maui.d -> ../maui.d*

/etc/init.d/rc3.d/S01maui.d -> ../maui.d*

/etc/init.d/rc5.d/K01maui.d -> ../maui.d*

/etc/init.d/rc5.d/S01maui.d -> ../maui.d*

Reboot the system, and check to see if Maui is running by

ps aux | grep -i maui

15. Copy the source to /usr/local/maui/source/ after “make clean” for further reference.
The documentations are in directory /usr/local/maui/source/maui- 3.2.6p21/docs/.

These steps complete the installation of the Maui Scheduler. The Torque (openPBS) sched-
uler is thus replaced by the Maui Scheduler on this computing cluster.

3.10 Monitoring System: Ganglia

For convenient monitoring of the resources of the computing cluster, a distributed monitoring
system, Ganglia[14] is installed. Ganglia consists of a monitoring daemon (gmond), a meta
daemon (gmetad), and a PHP web front end. The monitoring daemon gmond has to be installed
on each client and the server. The meta daemon gmetad and the PHP web front only have
to be installed on the server. The meta daemon on the server collects informations from the
monitoring daemon on each node, and prepares data viewable by the web front end.

The Ganglia package ganglia-3.1.2.tar.gz on this computing cluster with the following
steps.

1. Several packages are required to be installed on the system before building Ganglia, includ-
ing rrdtool-1.3.4-1.27.1, rrdtool-devel-1.3.4-1.27.1, libconfuse0-2.5-1.63,
libconfuse-devel-2.5-1.63, and python-devel-2.6.0-2.22.1. These packages are
all installed by clicking on YaST → Software → Software Management. After installing
the two rrdtool packages, check that the file /usr/include/rrd.h and the library
/usr/lib64/librrd.so are on the system. After the installation of the python-devel

package, check that the file /usr/include/python2.6/Python.h is on the system.

2. Unpack package ganglia-3.1.2.tar.gz at /tmp/ganglia-3.1.2/ as a super user.

3. Configure, make, and install the package as follows.

cd /tmp/ganglia-3.1.2/

./configure --with-gmetad --with-librrd=/usr/include \

-prefix=/opt/ganglia/3.1.2

make

make install

The package is installed to /opt/ganglia-3.1.2/.

4. Copy the manual pages to the proper directories by

42 CHAPTER 3. SYSTEM SOFTWARE

mkdir /opt/ganglia/3.1.2/man/ \

/opt/ganglia/3.1.2/man/man1 \

/opt/ganglia/3.1.2/man/man5

cp /tmp/ganglia-3.1.2/mans/* \

/opt/ganglia/3.1.2/man/man1/

cp /tmp/ganglia-3.1.2/gmond/gmond.conf.5 \

/opt/ganglia/3.1.2/man/man5

Add the following lines to user’s ~/.bash_profile for the executables and manual pages
of the Ganglia to be accessible by the user.

Environment for ganglia

PATH=$PATH:/opt/ganglia/3.1.2/bin

export PATH

MANPATH=$MANPATH:/opt/ganglia/3.1.2/man

export MANPATH

5. Establish the boot script for gmond as a super user by the following commands.

cd /tmp/ganglia/3.1.2/

cp ./gmond/gmond.init.SuSE /etc/init.d/gmond

cp /etc/init.d/gmond /etc/init.d/gmond.orig

chmod 755 /etc/init.d/gmond

chmod 644 /etc/init.d/gmond.orig

Change a line in /etc/init.d/gmond to point to the right path for the executable

GMOND_BIN=/opt/ganglia/3.1.2/sbin/gmond

and comment out a few lines as follows.

Determine the base and follow a runlevel link name.

#base=${0##*/}

#link=${base#*[SK][0-9][0-9]}

Force execution if not called by a runlevel directory.

#test $link = $base && START_GMOND=yes

#test "$START_GMOND" = yes || exit 0

because these lines cause some troubles on the clients, and have to be excluded. Create
the boot script links by

/sbin/chkconfig --add gmond

Check the links with command

/sbin/chkconfig --list gmond

6. On the server node, configure gmond as a super user with the following commands.

3.10. MONITORING SYSTEM: GANGLIA 43

mkdir /etc/ganglia

cd /etc/ganglia

/opt/ganglia/3.1.2/sbin/gmond --default_config \

> ./gmond.conf.orig

cp gmond.conf.orig gmond.conf

Change the following lines in /etc/ganglia/gmond.conf,

cluster {

name = "xeoncluster_sham"

owner = "Computational Physics Laboratories"

latlong = "N23.28 E120.29"

url = "http://sham.ncyu.edu.tw/"

}

udp_send_channel {

mcast_join = 192.168.1.15

port = 8649

ttl = 1

}

udp_recv_channel {

/* mcast_join = 192.168.1.15 */

port = 8649

/* bind = 192.168.1.15 */

}

7. Copy directory /etc/ganglia/ of server to each client with the following script.

for i in 12 13 14

do

cp -a /etc/ganglia /tftpboot/nodes/192.168.1.$i/etc/

chmod 755 /tftpboot/nodes/192.168.1.$i/etc/ganglia

chmod 644 /tftpboot/nodes/192.168.1.$i/etc/ganglia/*

done

This step is necessary because the /etc directory of each client node is mounted from the
/tftpboot/nodes/192.168.0.$i/etc/ of the server. Files /etc/ganglia/gmond.conf*
are copied to each node in the process.

8. Service /etc/init.d/gmond on each client is configured to start automatically at boot
time by the following method. Change the following line in
/opt/drbl/conf/client-extra-service

service_extra_added="ntp pbs_mom gmond"

and rerun

/opt/drbl/sbin/drblpush -c /etc/drbl/drblpush.conf

Alternatively, this step can be achieved by the following script to set up the initialization
script of gmond on each client.

44 CHAPTER 3. SYSTEM SOFTWARE

for i in 12 13 14

do

cp -a /etc/init.d/gmond* \

/tftpboot/nodes/192.168.1.$i/etc/init.d

cd /tftpboot/nodes/192.168.1.$i/etc/init.d/rc3.d

ln -s ../gmond S99gmond

done

This step is necessary because the /etc directory of each client node is mounted from the
directory /tftpboot/nodes/192.168.1.$i/etc/ of the server. Check that gmond is up
on the clients by

drbl-doit ps aux | grep gmond

after reboot.

9. Establish the boot script for gmetad on the server as a super user with the following
commands.

cp ./gmetad/gmetad.init.SuSE /etc/init.d/gmetad

cp /etc/init.d/gmetad /etc/init.d/gmetad.orig

chmod 755 /etc/init.d/gmetad

chmod 644 /etc/init.d/gmetad.orig

Change a line in file /etc/init.d/gmetad to point to the right path for the executable.

GMETAD_BIN=/opt/ganglia/3.1.2/sbin/gmetad

Create the boot script links by

/sbin/chkconfig --add gmetad

Check the links with command

/sbin/chkconfig --list gmetad

10. Configure the initialization script /etc/init.d/gmetad with commands.

cp /tmp/ganglia-3.1.2/gmetad/gmetad.conf /etc/ganglia/

chmod 644 /etc/ganglia/gmetad.conf

cp -a /etc/ganglia/gmetad.conf \

/etc/ganglia/gmetad.conf.orig

Change a line in the configuration file /etc/ganglia/gmetad.conf.

data_source "xeoncluster_sham" localhost

Create the round-robin database of gmetad by

cd /var/lib

mkdir -p ganglia/rrds

chown nobody.nobody /var/lib/ganglia/rrds

3.10. MONITORING SYSTEM: GANGLIA 45

The round-robin database of service gmetad is located at the directory
/var/lib/ganglia/rrds.

11. Check that services gmond and gmetad are properly configured to start automatically at
boot time by clicking on YaST2 → System → System Services (Runlevel).

12. Install the PHP web front for Ganglia with the following commands.

mkdir /srv/www/htdocs/ganglia

cp -a /tmp/ganglia/ganglia-3.1.2/web/* \

/srv/www/htdocs/ganglia

chown -R root.root /srv/www/htdocs/ganglia/*

chmod 644 /srv/www/htdocs/ganglia/conf.php

chmod 644 /srv/www/htdocs/ganglia/version.php

Directory /srv/www/htdocs/ is used because of the following line

DocumentRoot "/srv/www/htdocs"

in the Apache configuration file /etc/apache2/default-server.conf of this cluster.

13. Activate the HTTP server by clicking on YaST → Network Services → HTTP Server.
Set “Listen on Ports 140.130.91.204/80, 192.168.1.15/80, and 127.0.0.1/80.” Select “En-
able PHP5 Scripting.” Set Main Host as follows: “Server Name/sham” and “Server
Administrator Email/root@sham.”

14. Enable apache2 by clicking on YaST → System → System Services (Runlevel).

15. Test Ganglia by visiting the following URL with the command.

firefox http://localhost/ganglia/

16. Copy the Ganglia source to /opt/ganglia/source/ganglia-3.1.2/ for future reference
after “make clean”.

This completes the installation of the monitoring system, Ganglia on this computing cluster.

46 CHAPTER 3. SYSTEM SOFTWARE

Chapter 4

The Compeleted Cluster

The completed computing cluster in full function is shown in Fig. 4.1. The cluster has one
server node and three clients connected by gigabit network. The operating system is based on
openSUSE Linux 11.1 distribution. Both Intel and Open64 compilers are installed. DRBL is
used to set up the networking system between nodes. In the process, DHCP, TFTP, NFS, and
NIS are installed, if not previously, and configured automatically. NTP and SSH are used for the
nodes to work in unison. Torque (openPBS) and Maui Scheduler are employed for the queuing
system. The system resources are monitored by Ganglia monitoring system. An example
of the web display of system resource usage monitored by Ganglia is given in Fig. 4.2. The
parallelization is achieved by MPICH2 or MPICH. The performance testing codes of MPICH
show that the performances of MPICH compiled by Intel and Open64 compilers are about the
same.

This computing cluster has diskless clients; all system and user files are on the server storage
disks. This implementation simplifies the system installation and maintenance, and improves
hardware reliability. However, since all system and user files are on the server only, important
files must be backed up regularly to avoid loss of data caused by the failure of server hard
disks. Notice that there is a partition, /srv that is physically located on device /dev/sdc.
This partition is intentionally allocated to a hard disk that is different from the the device
/dev/sda accommodating /, /home, /opt, and other directories. Hence, important files on
device /dev/sda can be regularly copied to device /dev/sdc. Unless these two disks fail at the
same time, the loss of data due to server hard disk failure is reduced to minimum.

The construction of the high-performance computing cluster is thus completed, and the

Figure 4.1: The four computers at the right hand side of the picture are the server and the
three clients of the high-performance computing cluster. The gigabit switch and the KVM
controller are at the lower left corner of the picture. Currently, this Xeon cluster is sharing
the gigabit switch and the KVM controller with a Opteron cluster. All other hardware in the
picture belongs to the Opteron cluster.

47

48 CHAPTER 4. THE COMPELETED CLUSTER

Figure 4.2: The web display of system resource usage monitored by Ganglia.

computing cluster is ready for the installation of parallelized applications.

Chapter 5

Application Software

The parallelize application, Vienna Ab-initio Simulation Package (VASP) is installed on this
computing cluster for nanoscience simulation. VASP is a package for performing first-principle
molecular simulations using pseudopotentials or the projector-augmented wave method and a
plane wave basis set[27]. Notice that VASP is not public-domain or share-ware, a fee has to be
paid to license the software[28].

Before the installation of VASP, the FFT package fftw-3.2.2.tar.gz is installed with the
following steps[29]. This FFT package will be called by VASP.

1. Unpack fftw-3.2.2.tar.gz as super user at a work directory.

tar -xvzpf fftw-3.2.2.tar.gz

2. Configure, build, and install the library by commands

./configure --prefix=/opt/fftw/3.2.2 CC=icc F77=ifort

make

make install

The compiled library is then installed to /opt/fftw/3.2.2/.

3. Copy the source to /opt/fftw/3.2.2/source/ for future reference. The documentation
in HTML format starts at /opt/fftw/3.2.2/source/doc /html/index.html.

VASP version 4.6.36 is compiled by Intel compilers version 11.1.046 and is installed on this
computing cluster using sources vasp.4.6.tar.gz and vasp.4.lib.tar.gz. Four different
kinds of VASP binary codes are built on this cluster: parallel, serial, parallel gamma-point-
only, and serial gamma-point-only VASP[30]. The steps to build these VASP binary codes are
given in the following subsections.

5.1 Parallel VASP

The steps used to build the parallelized VASP binary code are presented below.

1. Build the library in ~/SIMUcode/VASP/4.6.36/src/vasp.4.lib as follows.

Select makefile.linux_ifc_P4 as the starting Makefile by

cd ~/SIMUcode/VASP/4.6.36/src/vasp.4.lib

cp makefile.linux_ifc_P4 Makefile.orig

cp -a Makefile.orig Makefile

49

50 CHAPTER 5. APPLICATION SOFTWARE

Change a line in Makefile

FC=ifort

Issue command

make

The vasp.4.lib is thus built after this step.

2. Build the parallelized executable code for VASP as follows.

Select makefile.linux_ifc_P4 as the starting Makefile by

cd ~/SIMUcode/VASP/4.6.36/src/vasp.4.6

cp makefile.linux_ifc_P4 Makefile.orig

cp -a Makefile.orig Makefile

A few important lines in Makefile have to be changed as follows.

FC=ifort

#CPP = $(CPP_) -DHOST=\"LinuxIFC\" \

-Dkind8 -DNGXhalf -DCACHE_SIZE=12000

-DPGF90 -Davoidalloc

#OFLAG=-O3 -xW -tpp7

OFLAG=-O3 -xSSE4.1

#BLAS= /opt/libs/libgoto/libgoto_p4_512-r0.6.so

BLAS=-L/opt/intel/Compiler/11.1/046/mkl/lib/em64t \

-lmkl_intel_lp64 -lmkl_sequential -lmkl_core \

-lpthread

#LAPACK= ../vasp.4.lib/lapack_double.o

LAPACK=-L/opt/intel/Compiler/11.1/046/mkl/lib/em64t \

-lmkl_intel_lp64 -lmkl_sequential -lmkl_core \

-lpthread

#FFT3D = fftw3d.o fft3dlib.o \

/opt/libs/fftw-3.0.1/lib/libfftw3.a

#FFT3D = fftw3d.o fft3dlib.o \

/opt/fftw/3.2.2/lib/libfftw3.a

FC=mpif90

FCL=$(FC)

CPP = $(CPP_) -DMPI -DHOST=\"LinuxIFC\" -DIFC \

-Dkind8 -DNGZhalf -DCACHE_SIZE=16000 \

-DPGF90 -Davoidalloc -DMPI_BLOCK=500

#FFT3D = fftmpiw.o fftmpi_map.o fft3dlib.o \

/opt/intel/Compiler/11.1/046/mkl/interfaces/

fftw3xf/libfftw3xf_intel.a

#fft3dlib.o : fft3dlib.F

$(CPP)

$(FC) -FR -lowercase -O1 -tpp7 -xW -unroll0 \

-e95 -vec_report3 -c $*$(SUFFIX)

FFT3D = fftmpiw.o fftmpi_map.o fft3dlib.o \

/opt/fftw/3.2.2/lib/libfftw3.a

$(FC) -FR -lowercase -O1 -xSSE4.1 -unroll0 \

-warn nostderrors -vec_report3 -c $*$(SUFFIX)

5.2. SERIAL VASP 51

Optimization option -xSSE4.1 is used because Xeon CPUs are used in this cluster. BLAS
and LAPACK libraries of Intel MKL are used; whereas the FFT3D library is compiled on
the server. MPICH2 is used for parallelization. Issue the following command to build the
binary code.

make

Parallelized binary file ~/SIMUcode/VASP/4.6.36/src/vasp.4.6/vasp is generated after
this step. Change the executable VASP file vasp to a different name, say vasp-4.6.36_parallel.

5.2 Serial VASP

The steps used to build the parallelized VASP binary code are presented below.

1. Build the library in ~/SIMUcode/VASP/4.6.36/src/vasp.4.lib with the same method
as in Subsection 5.1

2. Build the serial executable code for VASP as follows.

Select makefile.linux_ifc_P4 as the starting Makefile by

cd ~/SIMUcode/VASP/4.6.36/src/vasp.4.6

cp makefile.linux_ifc_P4 Makefile.orig

cp -a Makefile.orig Makefile

A few important lines in Makefile have to be changed as follows.

FC=ifort

CPP = $(CPP_) -DHOST=\"LinuxIFC\" \

-Dkind8 -DNGXhalf -DCACHE_SIZE=16000

-DPGF90 -Davoidalloc

#OFLAG=-O3 -xW -tpp7

OFLAG=-O3 -xSSE4.1

#BLAS= /opt/libs/libgoto/libgoto_p4_512-r0.6.so

BLAS=-L/opt/intel/Compiler/11.1/046/mkl/lib/em64t \

-lmkl_intel_lp64 -lmkl_sequential -lmkl_core \

-lpthread

#LAPACK= ../vasp.4.lib/lapack_double.o

LAPACK=-L/opt/intel/Compiler/11.1/046/mkl/lib/em64t \

-lmkl_intel_lp64 -lmkl_sequential -lmkl_core \

-lpthread

#FFT3D = fftw3d.o fft3dlib.o \

/opt/libs/fftw-3.0.1/lib/libfftw3.a

FFT3D = fftw3d.o fft3dlib.o \

/opt/fftw/3.2.2/lib/libfftw3.a

#FC=mpif90

FCL=$(FC)

CPP = $(CPP_) -DMPI -DHOST=\"LinuxIFC\" -DIFC \

-Dkind8 -DNGZhalf -DCACHE_SIZE=16000 \

-DPGF90 -Davoidalloc -DMPI_BLOCK=500

#FFT3D = fftmpiw.o fftmpi_map.o fft3dlib.o \

52 CHAPTER 5. APPLICATION SOFTWARE

/opt/intel/Compiler/11.1/046/mkl/interfaces/

fftw3xf/libfftw3xf_intel.a

#fft3dlib.o : fft3dlib.F

$(CPP)

$(FC) -FR -lowercase -O1 -tpp7 -xW -unroll0 \

-e95 -vec_report3 -c $*$(SUFFIX)

$(FC) -FR -lowercase -O1 -xSSE4.1 -unroll0 \

-warn nostderrors -vec_report3 -c $*$(SUFFIX)

Optimization option -xSSE4.1 is used for the Xeon CPUs used with this cluster. Issue
the following command to build the binary code.

make

Serial executable file ~/SIMUcode/VASP/4.6.36/src/vasp.4.6/vasp is generated after this
step. Change the executable VASP file vasp to a different name, say vasp-4.6.36_serial.

5.3 Parallel Gamma-Point-Only VASP

The steps used to build the parallelized gamma-point-only VASP binary code are presented
below.

1. Build the library in ~/SIMUcode/VASP/4.6.36/src/vasp.4.lib with the same method
as in Subsection 5.1

2. Reuse the Makefile of the parallel VASP in Subsection 5.1. Change a line in the
Makefile.

CPP = $(CPP_) -DMPI -DHOST=\"LinuxIFC\" -DIFC \

-Dkind8 -DNGZhalf -DwNGZhalf \

-DCACHE_SIZE=16000 -DPGF90 \

-Davoidalloc -DMPI_BLOCK=500

Issue command

make

Parallel gamma-point-only binary VASP code is generated after this step. Rename the exe-
cutable file vasp to be vasp-4.6.36_gamma_parallel.

5.4 Serial Gamma-Point-Only VASP

The steps used to build the serial gamma-point-only VASP binary code are presented below.

1. Build the library in ~/SIMUcode/VASP/4.6.36/src/vasp.4.lib with the same method
as in Subsection 5.1

2. Reuse the Makefile of the parallel VASP in Subsection 5.2. Change a line in the
Makefile.

5.5. RUNNING VASP 53

CPP = $(CPP_) -DHOST=\"LinuxIFC\" \

-Dkind8 -DNGXhalf -DwNGXhalf \

-DCACHE_SIZE=16000 -DPGF90 -Davoidalloc

Issue command

make

Serial gamma-point-only binary VASP code is generated after this step. Rename the executable
file vasp to be vasp-4.6.36_gamma_serial.

5.5 Running VASP

For convenience of usage, the four kinds of VASP binary codes are copied to directory
/opt/VASP/4.6.36/bin/. The parallel VASP is made to be the default binary code by

ln -s ~/bin/vasp /opt/VASP/4.6.36/bin/vasp-4.6.36_parallel

Script file govasp.sh with the following contents are created.

#!/bin/sh

Job name

#PBS -N VASP

Output files

#PBS -e vasp.err

#PBS -o vasp.log

Quene name

#PBS -q default

Number of nodes

#PBS -l nodes=3:ppn=8

echo Starting at ‘hostname‘ on ‘date‘

if [-n "$PBS_NODEFILE"]; then

if [-f $PBS_NODEFILE]; then

print the node names

echo "Nodes used for this job:"

cat ${PBS_NODEFILE}

fi

fi

Display the job’s working directory

echo Working directory is $PBS_O_WORKDIR

cd $PBS_O_WORKDIR

Use mpiexec to run MPICH2 programs

sort $PBS_NODEFILE | uniq -c | \

awk ’{ printf ("%s:%s\n", $2, $1) ; }’ \

> mpd.mach

mpdboot -f mpd.mach -n ‘cat $PBS_NODEFILE | \

uniq | wc -l‘ --ncpus=8

mpiexec -n ‘cat $PBS_NODEFILE | wc -l‘ vasp

54 CHAPTER 5. APPLICATION SOFTWARE

mpdallexit

Print end time

echo Job ends at ‘date‘

After copying it to the work directory, the script can be submitted to the queuing system by

qsub govasp.sh

5.6 VASP benchmark

The example in bench.Hg.tar.gz is computed with 1 to 24 CPU cores. The benchmark data
obtained with this computing cluster are tabulated in Table 5.1 under the system name of
“Dual Quad-Core Xeon Cluster.” The benchmark data of other main-stream systems are given
in the latter part of the table for comparison.

Table 5.1: VASP benchmark (bench.Hg)

System Name Number of CPU Cores CPU Time (sec)
Dual Quad-Core Xeon 1 93.70
Cluster 2 51.95

4 30.53
8 (1 node) 24.19
16 (2 nodes) 23.97
24 (3 nodes) 230.47

Itanium2 1300 HP-UX 1 127†

IBM SP3 1 356†

SGI Origin 1 1200†

SGI Origin 4 330†

† Data are cited from Ref. [30]. The middle column is the number of nodes.

On this computing cluster, running the benchmark job with four CPU cores is about three
times as fast as running it with a single core. Running the job with 8 cores does not gain much
in performance. Running the job with 16 cores is just about as fast as running it with 8 cores.
Running the job with 24 cores greatly degrade the performance. The performance saturation at
16 cores and degradation at 24 cores are because communication through the gigabit network
slow down the computation. This adverse effect becomes severe as more than two nodes are
involved with a computation.

Comparison with the main-stream systems shows that the performance of this computing
cluster, to some extent, is comparable with the main-stream systems. The Xeon cluster does
not scale as well as SGI Origin when multi-nodes are used for a computation. This can be
attributed to the commodity networking hardware used with the Xeon cluster.

Chapter 6

Concluding Remarks

In this monograph, the construction procedures for a high-performance computing cluster with
diskless clients are presented. Its applications to nanoscience simulations are also demonstrated.

Commodity hardware and open source software are used for the construction of the comput-
ing cluster. The cluster consists of one server node and three clients. All nodes are connected by
gigabit network. The cluster operating system is based on openSUSE Linux 11.1 distribution.
Both Intel and Open64 compilers are installed.

DRBL is used to set up the network connection between nodes. With DRBL, services
DHCP, TFTP, NFS, and NIS are installed and configured automatically. NTP is employed
to ensure that the system time is consistent between nodes. SSH are used for node-to-node
communication.

The queuing system are implemented using Torque (openPBS) batch system and Maui
scheduler.

With the Ganglia monitoring system, the usage of system resources can be monitored using
web browser such as firefox.

The parallelization is achieved by MPICH2 or MPICH. Comparison of the performance
testing codes of MPICH compiled by Intel and Open64 compilers shows that the performance
of MPICH is rather independent of the compiler.

Parallelized application, VASP is compiled and run on this computing cluster. Benchmark
data show that the performance of this computing cluster is comparable, to some extent, with
the main-stream machines such as Itanium2 1300, IBM SP3, and SGI Origin.

This high-performance computing cluster features several advantages, including

• Easy installation: With DRBL, the installation process of a high-performance comput-
ing cluster is greatly simplified. The network services DHCP, TFTP, NFS, and NIS are
installed, if not previously, and configured automatically.

• Easy maintenence: All system and application software are installed only on the server
hard disk. The clients have no hard disk. Hence, the cluster appears to the administrator
to be a single machine; software update and account management are all performed on
the server only. The maintenence efforts are therefore reduced once the cluster is properly
constructed and configured.

• Improved hardware reliability: Because this high-performance computing cluster has
diskless clients, the possible problems of hard disk failure are completely avoided on the
clients. The hardware reliability of the computing cluster is thus improved.

• High performance-cost ratio: Since the computing cluster is constructed with com-
modity hardware and open source software, its cost is reduced to a minimum. The

55

56 CHAPTER 6. CONCLUDING REMARKS

benchmark data show that the performance of this computing cluster is comparable, in
some cases, with main-stream systems. Hence, the performance-cost ratio is quite high.

Because of the above features, the construction methods demonstrated in this monograph
are particularly suitable for laboratories that need the computing power of a small- to medium-
sized high-performance computing cluster.

Bibliography

[1] R. M. Martin, Electronic structures: Basic theory and practical methods. Cambridge:
Cambridge University Press, 2005.

[2] P. Ordejon, D. A. Drabold, R. M. Martin, and M. P. Grumbach, “Linear system-size scaling
methods for electronic-structure calculations,” Phys. Rev. B, vol. 51, no. 3, pp. 1456–1476,
1995.

[3] P. Kitterrick (Apr. 2010), “Building a Diskless Linux Cluster: Debian(Etch) + DRBL +
GridEngine.” [Online]. Available: http://blog.padraigkitterick.com/2007/ 07/25/building-
a-diskless-linux-cluster-debian-etch-drbl-gridengine/.

[4] For example, Single Linux Image Management(SLIM) is also a solution to high-
performance computing clusters with diskless clients. Information is a available at
http://slim.csis.hku.hk/.

[5] Intel Corporation (Apr. 2010), “Intel Xeon Processor 5000 Sequence.” [Online]. Available:
http://www.intel.com/p/en US/products/server/processor/xeon5000/.

[6] MiTAC International Corporation (Apr. 2010), “Tyan System Boards Tempest
i5100W S5376 (S5376G2NR).” [Online]. Available: http://www.tyan.com/product
SKU spec.aspx?ProductType=MB&pid=605&SKU=600000019.

[7] openSUSE (Apr. 2010), “openSUSE 11.1.” [Online]. Available: http://www.opensuse.
org/.

[8] The GCC team (Apr. 2010), “GCC, the GNU Compiler Collection.” [Online]. Available:
http://gcc.gnu.org/.

[9] Intel Software Network (Apr. 2010), “Intel Compilers.” [Online]. Available: http://
software.intel.com/en-us/intel-compilers/.

[10] AMD Developer Central (Apr. 2010), “x86 Open64 Compiler Suite.” [Online]. Available:
http://developer.amd.com/cpu/open64/Pages/default.aspx.

[11] S. Shiau (Apr. 2010), “DRBL (Diskless Remote Boot in Linux).” [Online]. Available:
http://drbl.sourceforge.net/ or http://drbl.nchc.org.tw/.

[12] Cluster Resources Inc. (Apr. 2010), “TORQUE Resource Manager.” [Online]. Available:
http://www.clusterresources.com/products/torque-resource-manager.php.

[13] Cluster Resources Inc. (Apr. 2010), “Maui Cluster Scheduler.” [Online]. Available:
http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php.

[14] Ganglia (Apr. 2010), “Ganglia Monitoring System.” [Online]. Available: http://gang-
lia.info/.

57

58 BIBLIOGRAPHY

[15] Argonne National Laboratory (Apr. 2010), “MPICH2.” [Online]. Available: http://
www.mcs.anl.gov/research/projects/mpich2/.

[16] MPICH (Apr. 2010), “MPICH-A Portable Implementation of MPI.” [Online]. Available:
http://www.mcs.anl.gov/research/projects/mpi/mpich1/index.htm.

[17] K. Thomas, Beginning SUSE Linux: From Novice to Professional. Berkeley: Apress, 2005.

[18] AMD (Apr. 2010), “Graphics Drivers & Software.” [Online]. Available: http://sup-
port.amd.com/us/gpudownload/Pages/index.aspx.

[19] C. T. Yang, P. I. Chen, and Y. L. Chen, “Performance evaluation of SLIM and DRBL
diskless PC clusters on Fedora Core 3,” Sixth International Conference on Parallel and
Distributed Computing, Applications, and Technologies, 2005(PDCAT 2005), pp. 479–482,
2005.

[20] C. T. Yang and Y. C. Chang, “An introduction to a PC cluster with diskless slave nodes,”
Tunghai Science, vol. 4, pp. 25–46, 2002.

[21] M. H. Chen and T. L. Li, “Construction of a high-performance computing cluster: A cur-
riculum for engineering and science students,” Comput. Appl. Eng. Educ., 2009. Published
on-line. DOI: 10.1002/cae.20352.

[22] DHCP (Apr. 2010), “Resources for DHCP.” [Online]. Available: http://www.dhcp. org/.

[23] PXELINUX (Apr. 2010), “PXELINUX.” [Online]. Available: http://syslinux.zytor.
com/wiki/index.php/PXELINUX.

[24] W. Gropp, E. Lusk, and A. Skjellum, Using MPI. Cambridge: MIT Press, 1999.

[25] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2. Cambridge: MIT Press, 1999.

[26] R. H. Bisseling, Parallel Scientific Computation: A Structured Approach using BSP and
MPI. Oxford: Oxford University Press, 2004.

[27] G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy cal-
culations using plane-wave basis set,” Phys. Rev. B, vol. 54, no. 16, pp. 11169–11186,
1996.

[28] VASP Group (Apr. 2010), “Vienna Ab-initio Simulation Package.” [Online]. Available:
http://cms.mpi.univie.ac.at/vasp/.

[29] M. Frigo and S. G. Johnson (Apr. 2010), “FFTW.” [Online]. Available: http://www.
fftw.org/.

[30] G. Kresse, M. Marsman, and J. Furthmuller, VASP the Guide. Vienna, April 23, 2009.

View publication statsView publication stats

https://www.researchgate.net/publication/266087980

